Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2232: 113-122, 2021.
Article in English | MEDLINE | ID: mdl-33161543

ABSTRACT

Assessment of endophytic and saprotrophic microbial communities from wood-extracted DNA presents challenges due to the presence of surface microbes that contaminate samples and plant compounds that act as inhibiting agents. Here, we describe a method for decontaminating, sampling, and processing wood at various stages of decay for high-throughput extraction and purification of DNA.


Subject(s)
DNA Barcoding, Taxonomic/methods , DNA/isolation & purification , Fungi/genetics , Wood/genetics , DNA/genetics , Fungi/classification , Wood/microbiology
2.
Environ Microbiol ; 22(11): 4702-4717, 2020 11.
Article in English | MEDLINE | ID: mdl-32840945

ABSTRACT

Diverse communities of fungi and bacteria in deadwood mediate wood decay. While rates of decomposition vary greatly among woody species and spatially distinct habitats, the relative importance of these factors in structuring microbial communities and whether these shift over time remains largely unknown. We characterized fungal and bacterial diversity within pieces of deadwood that experienced 6.3-98.8% mass loss while decaying in common garden 'rotplots' in a temperate oak-hickory forest in the Ozark Highlands, MO, USA. Communities were isolated from 21 woody species that had been decomposing for 1-5 years in spatially distinct habitats at the landscape scale (top and bottom of watersheds) and within stems (top and bottom of stems). Microbial community structure varied more strongly with wood traits than with spatial locations, mirroring the relative role of these factors on decay rates on the same pieces of wood even after 5 years. Co-occurring fungal and bacterial communities persistently influenced one another independently from their shared environmental conditions. However, the relative influence of wood construction versus spatial locations differed between fungi and bacteria, suggesting that life history characteristics of these clades structure diversity differently across space and time in decomposing wood.


Subject(s)
Microbiota/physiology , Wood/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Carya/microbiology , Forests , Fungi/classification , Fungi/genetics , Fungi/isolation & purification , Microbial Interactions , Missouri , Quercus/microbiology , Time Factors , Wood/classification
3.
Glob Chang Biol ; 26(2): 864-875, 2020 02.
Article in English | MEDLINE | ID: mdl-31628697

ABSTRACT

Whether global change will drive changing forests from net carbon (C) sinks to sources relates to how quickly deadwood decomposes. Because complete wood mineralization takes years, most experiments focus on how traits, environments and decomposer communities interact as wood decay begins. Few experiments last long enough to test whether drivers change with decay rates through time, with unknown consequences for scaling short-term results up to long-term forest ecosystem projections. Using a 7 year experiment that captured complete mineralization among 21 temperate tree species, we demonstrate that trait effects fade with advancing decay. However, wood density and vessel diameter, which may influence permeability, control how decay rates change through time. Denser wood loses mass more slowly at first but more quickly with advancing decay, which resolves ambiguity about the after-life consequences of this key plant functional trait by demonstrating that its effect on decay depends on experiment duration and sampling frequency. Only long-term data and a time-varying model yielded accurate predictions of both mass loss in a concurrent experiment and naturally recruited deadwood structure in a 32-year-old forest plot. Given the importance of forests in the carbon cycle, and the pivotal role for wood decay, accurate ecosystem projections are critical and they require experiments that go beyond enumerating potential mechanisms by identifying the temporal scale for their effects.


Subject(s)
Ecosystem , Wood , Carbon Cycle , Forests , Trees
4.
PLoS One ; 10(6): e0130381, 2015.
Article in English | MEDLINE | ID: mdl-26111162

ABSTRACT

Fungal lignocellulolytic enzymes are promising agents for oxidizing pollutants. This study investigated degradation of Number 6 "Bunker C" fuel oil compounds by the white-rot fungi Irpex lacteus, Trichaptum biforme, Phlebia radiata, Trametes versicolor, and Pleurotus ostreatus (Basidiomycota, Agaricomycetes). Averaging across all studied species, 98.1%, 48.6%, and 76.4% of the initial Bunker C C10 alkane, C14 alkane, and phenanthrene, respectively were degraded after 180 days of fungal growth on pine media. This study also investigated whether Bunker C oil induces changes in gene expression in the white-rot fungus Punctularia strigosozonata, for which a complete reference genome is available. After 20 days of growth, a monokaryon P. strigosozonata strain degraded 99% of the initial C10 alkane in both pine and aspen media but did not affect the amounts of the C14 alkane or phenanthrene. Differential gene expression analysis identified 119 genes with ≥ log2(2-fold) greater expression in one or more treatment comparisons. Six genes were significantly upregulated in media containing oil; these genes included three enzymes with potential roles in xenobiotic biotransformation. Carbohydrate metabolism genes showing differential expression significantly accumulated transcripts on aspen vs. pine substrates, perhaps reflecting white-rot adaptations to growth on hardwood substrates. The mechanisms by which P. strigosozonata may degrade complex oil compounds remain obscure, but degradation results of the 180-day cultures suggest that diverse white-rot fungi have promise for bioremediation of petroleum fuels.


Subject(s)
Basidiomycota/metabolism , Biodegradation, Environmental , Fuel Oils/toxicity , Fungi/chemistry , Basidiomycota/chemistry , Basidiomycota/genetics , Carbohydrate Metabolism/genetics , Environmental Pollutants/chemistry , Fungi/metabolism , Gene Expression Regulation, Fungal/drug effects , Humans , Oxidants
SELECTION OF CITATIONS
SEARCH DETAIL
...