Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cancer Ther ; 15(10): 2344-2356, 2016 10.
Article in English | MEDLINE | ID: mdl-27439478

ABSTRACT

The PI3K/AKT/mTOR pathway is among the most frequently altered pathways in cancer cell growth and survival. LY3023414 is a complex fused imidazoquinolinone with high solubility across a wide pH range designed to inhibit class I PI3K isoforms and mTOR kinase. Here, we describe the in vitro and in vivo activity of LY3023414. LY3023414 was highly soluble at pH 2-7. In biochemical testing against approximately 266 kinases, LY3023414 potently and selectively inhibited class I PI3K isoforms, mTORC1/2, and DNA-PK at low nanomolar concentrations. In vitro, inhibition of PI3K/AKT/mTOR signaling by LY3023414 caused G1 cell-cycle arrest and resulted in broad antiproliferative activity in cancer cell panel screens. In vivo, LY3023414 demonstrated high bioavailability and dose-dependent dephosphorylation of PI3K/AKT/mTOR pathway downstream substrates such as AKT, S6K, S6RP, and 4E-BP1 for 4 to 6 hours, reflecting the drug's half-life of 2 hours. Of note, equivalent total daily doses of LY3023414 given either once daily or twice daily inhibited tumor growth to similar extents in multiple xenograft models, indicating that intermittent target inhibition is sufficient for antitumor activity. In combination with standard-of-care drugs, LY3023414 demonstrated additive antitumor activity. The novel, orally bioavailable PI3K/mTOR inhibitor LY3023414 is highly soluble and exhibits potent in vivo efficacy via intermittent target inhibition. It is currently being evaluated in phase I and II trials for the treatment of human malignancies. Mol Cancer Ther; 15(10); 2344-56. ©2016 AACR.


Subject(s)
Antineoplastic Agents/pharmacology , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors , Animals , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Biological Availability , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Models, Animal , Drug Synergism , Enzyme Activation/drug effects , Humans , Hydrogen-Ion Concentration , Mice , Models, Molecular , Molecular Conformation , Phosphatidylinositol 3-Kinases/chemistry , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Protein Binding , Protein Kinase Inhibitors/chemistry , Signal Transduction/drug effects , Solubility , TOR Serine-Threonine Kinases/chemistry , TOR Serine-Threonine Kinases/metabolism , Xenograft Model Antitumor Assays
2.
J Biol Chem ; 288(5): 3500-11, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23239881

ABSTRACT

Nicotinamide phosphoribosyltransferase (NAMPT) catalyzes the first rate-limiting step in converting nicotinamide to NAD(+), essential for cellular metabolism, energy production, and DNA repair. NAMPT has been extensively studied because of its critical role in these cellular processes and the prospect of developing therapeutics against the target, yet how it regulates cellular metabolism is not fully understood. In this study we utilized liquid chromatography-mass spectrometry to examine the effects of FK866, a small molecule inhibitor of NAMPT currently in clinical trials, on glycolysis, the pentose phosphate pathway, the tricarboxylic acid (TCA) cycle, and serine biosynthesis in cancer cells and tumor xenografts. We show for the first time that NAMPT inhibition leads to the attenuation of glycolysis at the glyceraldehyde 3-phosphate dehydrogenase step due to the reduced availability of NAD(+) for the enzyme. The attenuation of glycolysis results in the accumulation of glycolytic intermediates before and at the glyceraldehyde 3-phosphate dehydrogenase step, promoting carbon overflow into the pentose phosphate pathway as evidenced by the increased intermediate levels. The attenuation of glycolysis also causes decreased glycolytic intermediates after the glyceraldehyde 3-phosphate dehydrogenase step, thereby reducing carbon flow into serine biosynthesis and the TCA cycle. Labeling studies establish that the carbon overflow into the pentose phosphate pathway is mainly through its non-oxidative branch. Together, these studies establish the blockade of glycolysis at the glyceraldehyde 3-phosphate dehydrogenase step as the central metabolic basis of NAMPT inhibition responsible for ATP depletion, metabolic perturbation, and subsequent tumor growth inhibition. These studies also suggest that altered metabolite levels in tumors can be used as robust pharmacodynamic markers for evaluating NAMPT inhibitors in the clinic.


Subject(s)
Enzyme Inhibitors/pharmacology , NAD/biosynthesis , Neoplasms/metabolism , Neoplasms/pathology , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Acrylamides/pharmacology , Adenosine Triphosphate/deficiency , Adenosine Triphosphate/metabolism , Animals , Carbon Isotopes , Cell Death/drug effects , Cell Line, Tumor , Citric Acid Cycle/drug effects , Female , Glycolysis/drug effects , Humans , Isotope Labeling , Mice , Mice, SCID , Nicotinamide Phosphoribosyltransferase/metabolism , Pentose Phosphate Pathway/drug effects , Piperidines/pharmacology , Serine/biosynthesis , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...