Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Membr Biol ; 253(2): 153-166, 2020 04.
Article in English | MEDLINE | ID: mdl-32146488

ABSTRACT

Hyperpolarization-activated cation-nonselective (HCN) channels regulate electrical activity in the brain and heart in a cAMP-dependent manner. The voltage-gating of these channels is mediated by a transmembrane (TM) region but is additionally regulated by direct binding of cAMP to a cyclic nucleotide-binding (CNB) fold in the cytoplasmic C-terminal region. Cyclic AMP potentiation has been explained by an autoinhibition model which views the unliganded CNB fold as an inhibitory module whose influence is disrupted by cAMP binding. However, the HCN2 subtype uses two other CNB fold-mediated mechanisms called open-state trapping and Quick-Activation to respectively slow the deactivation kinetics and speed the activation kinetics, against predictions of an autoinhibition model. To test how these multiple mechanisms are influenced by the TM region, we replaced the TM region of HCN2 with that of HCN4. This HCN4 TM-replacement preserved cAMP potentiation but augmented the magnitude of autoinhibition by the unliganded CNB fold; it moreover disrupted open-state trapping and Quick-Activation so that autoinhibition became the dominant mechanism contributed by the C-terminal region to determine kinetics. Truncation within the CNB fold partially relieved this augmented autoinhibition. This argues against the C-terminal region acting like a portable module with consistent effects on TM regions of different subtypes. Our findings provide evidence that functional interactions between the HCN2 TM region and C-terminal region govern multiple CNB fold-mediated mechanisms, implying that the molecular mechanisms of autoinhibition, open-state trapping, and Quick-Activation include participation of TM region structures.


Subject(s)
Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Protein Interaction Domains and Motifs , Cell Membrane/metabolism , Cyclic AMP/metabolism , Cytoplasm/metabolism , Electrophysiological Phenomena , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/agonists , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/antagonists & inhibitors , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/chemistry , Ion Channel Gating , Kinetics , Ligands , Protein Binding
2.
J Membr Biol ; 248(6): 1043-60, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26123597

ABSTRACT

Hyperpolarization- and cyclic nucleotide-activated (HCN) channels contribute to rhythmic oscillations in excitable cells. They possess an intrinsic autoinhibition with a hyperpolarized V 1/2, which can be relieved by cAMP binding to the cyclic nucleotide binding (CNB) fold in the C-terminal region or by deletion of the CNB fold. We questioned whether V 1/2 shifts caused by altering the autoinhibitory CNB fold would be accompanied by parallel changes in activation rates. We used two-electrode voltage clamp on Xenopus oocytes to compare wildtype (WT) HCN2, a constitutively autoinhibited point mutant incapable of cAMP binding (HCN2 R591E), and derivatives with various C-terminal truncations. Activation V 1/2 and deactivation t 1/2 measurements confirmed that a truncated channel lacking the helix αC of the CNB fold (ΔαC) had autoinhibition comparable to HCN2 R591E; however, ΔαC activated approximately two-fold slower than HCN2 R591E over a 60-mV range of hyperpolarizations. A channel with a more drastic truncation deleting the entire CNB fold (ΔCNB) had similar V 1/2 values to HCN2 WT with endogenous cAMP bound, confirming autoinhibition relief, yet it surprisingly activated slower than the autoinhibited HCN2 R591E. Whereas CNB fold truncation slowed down voltage-dependent reaction steps, the voltage-independent closed-open equilibrium subject to autoinhibition in HCN2 was not rate-limiting. Chemically inhibiting formation of the endogenous lipid PIP2 hyperpolarized the V 1/2 of HCN2 WT but did not slow down activation to match ΔCNB rates. Our findings suggest a "quickening conformation" mechanism, requiring a full-length CNB that ensures fast rates for voltage-dependent steps during activation regardless of potentiation by cAMP or PIP2.


Subject(s)
Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/chemistry , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Protein Interaction Domains and Motifs , Animals , Cyclic AMP/metabolism , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/antagonists & inhibitors , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics , Kinetics , Ligands , Mice , Mutation , Oocytes/metabolism , Patch-Clamp Techniques , Protein Binding , Protein Structure, Secondary , Xenopus laevis
4.
J Gen Physiol ; 137(6): 591-603, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21624949

ABSTRACT

Cyclic nucleotide-gated (CNG) channels bind cGMP or cAMP in a cytoplasmic ligand-binding domain (BD), and this binding typically increases channel open probability (P(o)) without inducing desensitization. However, the catfish CNGA2 (fCNGA2) subtype exhibits bimodal agonism, whereby steady-state P(o) increases with initial cGMP-binding events ("pro" action) up to a maximum of 0.4, but decreases with subsequent cGMP-binding events ("con" action) occurring at concentrations >3 mM. We sought to clarify if low pro-action efficacy was either necessary or sufficient for con action to operate. To find BD residues responsible for con action or low pro-action efficacy or both, we constructed chimeric CNG channels: subregions of the fCNGA2 BD were substituted with corresponding sequence from the rat CNGA4 BD, which does not support con action. Constructs were expressed in frog oocytes and tested by patch clamp of cell-free membranes. For nearly all BD elements, we found at least one construct where replacing that element preserved robust con action, with a ratio of steady-state conductances, g((10 mM cGMP))/g((3 mM cGMP)) < 0.75. When all of the BD sequence C terminal of strand ß6 was replaced, g((10 mM cGMP))/g((3 mM cGMP)) was increased to 0.95 ± 0.05 (n = 7). However, this apparent attenuation of con action could be explained by an increase in the efficacy of pro action for all agonists, controlled by a conserved "phosphate-binding cassette" motif that contacts ligand; this produces high P(o) values that are less sensitive to shifts in gating equilibrium. In contrast, substituting a single valine in the N-terminal helix αA abolished con action (g((30 mM cGMP))/g((3 mM cGMP)) increased to 1.26 ± 0.24; n = 7) without large increases in pro-action efficacy. Our work dissociates the two functional features of low pro-action efficacy and con action, and moreover identifies a separate structural determinant for each.


Subject(s)
Cyclic Nucleotide-Gated Cation Channels/agonists , Cyclic Nucleotide-Gated Cation Channels/metabolism , Amino Acid Sequence , Amino Acid Substitution , Animals , Cyclic Nucleotide-Gated Cation Channels/chemistry , DNA, Recombinant , Electrophysiology , Ligands , Mice , Models, Molecular , Molecular Sequence Data , Oocytes , Protein Conformation , Protein Structure, Tertiary , Rats , Xenopus
5.
Proc Natl Acad Sci U S A ; 108(2): 609-14, 2011 Jan 11.
Article in English | MEDLINE | ID: mdl-21187420

ABSTRACT

Voltage gating of hyperpolarization-activated cation (HCN) channels is potentiated by direct binding of cAMP to a cytoplasmic cAMP-sensing domain (CSD). When unliganded, the CSD inhibits hyperpolarization-dependent opening of the HCN channel gate; cAMP binding relieves this autoinhibition so that opening becomes more favorable thermodynamically. This autoinhibition-relief mechanism is conserved with that of several other cyclic nucleotide receptors using the same ligand-binding fold. Besides its thermodynamic effect, cAMP also modulates the depolarization-dependent deactivation rate by kinetically trapping channels in an open state. Here we report studies of strong open-state trapping in an HCN channel showing that the well-established autoinhibition-relief model is insufficient. Whereas deletion of the CSD mimics the thermodynamic open-state stabilization usually associated with cAMP binding, CSD deletion removes rather than mimics the kinetic effect of strong open-state trapping. Substitution of different CSD sequences leads to variation of the degree of open-state trapping in the liganded channel but not in the unliganded channel. CSD-dependent open-state trapping is observed during a voltage-dependent deactivation pathway, specific to the secondary open state that is formed by mode shift after prolonged hyperpolarization activation. This hysteretic activation-deactivation cycle is preserved by CSD substitution, but the change in deactivation kinetics of the liganded channel resulting from CSD substitution is not correlated with the change in autoinhibition properties. Thus the liganded and the unliganded forms of the CSD respectively provide the structural determinants for open-state trapping and autoinhibition, such that two distinct mechanisms for cAMP regulation can operate in one receptor.


Subject(s)
Cyclic AMP/chemistry , Cytoplasm/metabolism , Allosteric Site , Animals , Cations , Codon , Ion Channel Gating/physiology , Kinetics , Ligands , Mice , Patch-Clamp Techniques , Protein Binding , Protein Conformation , Protein Structure, Tertiary , Thermodynamics , Xenopus
6.
Channels (Austin) ; 3(6): 427-36, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19823021

ABSTRACT

Direct binding of cGMP or cAMP to tetrameric cyclic nucleotide-gated (CNG) channels will normally promote the open (conductive) conformation. However, the catfish CNGA2 subtype exhibits bimodal agonism, whereby open probability (P(o)) increases with initial cGMP binding events ("pro" action) but decreases with subsequent cGMP binding events ("con" action) that occur at concentrations above 3 mM. We constructed, and heterologously expressed, chimeric CNG channel subunits with sequence substitutions in the binding domain (BD), and tested their activation using patch-clamp of cell-free membranes. A normal subunit with the rat CNGA4 BD (with only pro action) could be converted into a bimodal subunit (both pro and con action) by replacing the N-terminal portion of the BD with catfish CNGA2 sequence. We then fused two bimodal and two normal subunits in tandem tetramers, to form heteromeric CNG channels with bimodal pseudosubunits either adjacent (cis) or diagonally opposite (trans). The cis tetramer showed con action, with a mean ratio of steady-state conductances g((30 mM cGMP))/g((3 mM cGMP)) = 0.87, demonstrating bimodal agonism in a heteromeric CNG channel for the first time. In contrast, trans tetramers showed normal cGMP agonism up to 30 mM cGMP with mean g((30 mM cGMP))/g((3mM cGMP))= 1.02, although a minority of oocytes (4 of 15) expressed anomalous channel populations with con action. Rearranging subunits in a heteromer thus influences a channel's P(o) at high cGMP concentration. The sensitivity of con action to neighbouring subunits implies a cooperative mechanism.


Subject(s)
Cyclic GMP/metabolism , Cyclic Nucleotide-Gated Cation Channels/agonists , Ion Channel Gating , Amino Acid Sequence , Animals , Catfishes , Electric Conductivity , Patch-Clamp Techniques , Protein Structure, Quaternary , Protein Subunits , Rats , Recombinant Fusion Proteins
7.
Pflugers Arch ; 458(5): 877-89, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19544068

ABSTRACT

Hyperpolarisation-activation of HCN ion channels relies on the movement of a charged S4 transmembrane helix, preferentially stabilising the open conformation of the ion pore gate. The open state is additionally stabilised, (a) when cyclic AMP (cAMP) is bound to a cytoplasmic C-terminal domain or (b) when the "mode I" open state formed initially by gate opening undergoes a "mode shift" into a "mode II" open state with a new S4 conformation. We isolated a mutation (lysine 381 to glutamate) in S4 of mouse HCN4; patch-clamp of homomeric channels in excised inside-out membranes revealed a conditional phenotype. When cAMP-liganded K381E channels are previously activated by hyperpolarisation, tens of seconds are required for complete deactivation at a weakly depolarised potential; this "ultra-sustained activation" is not observed without cAMP. Whilst cAMP slows deactivation of wild-type channels, the K381E mutation amplifies this effect to enable extraordinary kinetic stabilisation of the open state. K381E channels retain S4-gate coupling, with strong voltage dependence of the rate-limiting step for deactivation of mode II channels near -40 mV. At these voltages, the mode I deactivation pathway shows a different rate-limiting step, lacking strong voltage or cAMP dependence. Ultra-sustained activation thus reflects stabilisation of the mode II open state by the K381E mutation in synergistic combination with cAMP binding. Thus, the voltage-sensing domain is subject to strong functional coupling not only to the pore domain but also to the cytoplasmic cAMP-sensing domain in a manner specific to the voltage sensor conformation.


Subject(s)
Amino Acid Substitution/physiology , Cyclic AMP/metabolism , Cyclic Nucleotide-Gated Cation Channels/physiology , Ion Channel Gating/physiology , Animals , Cyclic AMP/pharmacology , Cyclic Nucleotide-Gated Cation Channels/genetics , Electrophysiological Phenomena/physiology , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , Ion Channel Gating/drug effects , Ion Channels/genetics , Kinetics , Membrane Potentials/physiology , Mice , Models, Biological , Oocytes/metabolism , RNA, Complementary/genetics , Recombinant Fusion Proteins/physiology , Xenopus laevis
8.
Neuron ; 44(5): 823-34, 2004 Dec 02.
Article in English | MEDLINE | ID: mdl-15572113

ABSTRACT

Cyclic nucleotides directly enhance the opening of the tetrameric CNG and HCN channels, although the mechanism remains unclear. We examined why HCN and certain CNG subunits form functional homomeric channels, whereas other CNG subunits only function in heteromeric channels. The "defect" in the CNGA4 subunit that prevents its homomeric expression was localized to its C-linker, which connects the transmembrane domain to the binding domain and contains a tripeptide that decreases the efficacy of ligand gating. Remarkably, replacement of the homologous HCN tripeptide with the CNGA4 sequence transformed cAMP into an inverse agonist that inhibits HCN channel opening. Using analytical ultracentrifugation, we identified the structural basis for this gating switch: whereas cAMP normally enhances the assembly of HCN C-terminal domains into a tetrameric gating ring, inclusion of the CNGA4 tripeptide reversed this action so that cAMP now causes gating ring disassembly. Thus, ligand gating depends on the dynamic oligomerization of C-terminal binding domains.


Subject(s)
Ion Channel Gating/physiology , Ion Channels/physiology , Ligands , Amino Acid Sequence , Animals , Catfishes , Conserved Sequence , Cyclic Nucleotide-Gated Cation Channels , Female , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , Ion Channels/genetics , Molecular Sequence Data , Oocytes , Potassium Channels , Xenopus
9.
J Biol Chem ; 279(5): 3553-62, 2004 Jan 30.
Article in English | MEDLINE | ID: mdl-14594805

ABSTRACT

Cyclic nucleotide-gated (CNG) channels open in response to direct binding of cyclic nucleotide messengers. Every subunit in a tetrameric CNG channel contains a cytoplasmic ligand-binding domain (BD) that includes a beta-roll (flanked by short helices) and a single C-terminal helix called the C-helix that was previously found to control efficacy (maximal open probability) and selectivity for cGMP versus cAMP. We constructed a series of chimeric CNG channel subunits, each containing a distinct BD sequence (chosen from among six phylogenetically divergent isoforms) fused to an invariant non-BD sequence. We assayed these "BD substitution" chimeras as homomeric CNG channels in Xenopus oo-cytes to compare their functions and found that the most efficient activation by both cAMP and cGMP derived from the BD of the catfish CNGA4 olfactory modulatory subunit (fCNGA4). We then tested the effects of replacing subregions of the bovine CNGA1 BD with corresponding fCNGA4 sequence and hence identified parts of the fCNGA4 BD producing efficient activation. For instance, replacing either the "hinge" that connects the roll and C-helix subdomains or the BD sequence N-terminal to the hinge greatly enhanced cAMP efficacy. Replacing the "loop-beta 8" region (the C-terminal end of the beta-roll) improved agonist sensitivity for cGMP selectively over cAMP. Our results thus identify multiple BD elements outside the C-helix that control selective ligand interaction and channel gating steps by distinct mechanisms. This suggests that the purine ring of the cyclic nucleotide may interact with both the beta-roll and the C-helix at different points in the mechanism.


Subject(s)
Ion Channels/chemistry , Amino Acid Sequence , Animals , Catfishes , Cattle , Cloning, Molecular , Cyclic AMP/metabolism , Cyclic GMP/metabolism , Cyclic Nucleotide-Gated Cation Channels , Cytoplasm/metabolism , Dose-Response Relationship, Drug , Humans , Ion Channels/physiology , Kinetics , Ligands , Models, Biological , Models, Molecular , Molecular Sequence Data , Oocytes/metabolism , Patch-Clamp Techniques , Phylogeny , Protein Binding , Protein Structure, Tertiary , Sequence Homology, Amino Acid , Thermodynamics , Xenopus
10.
Nature ; 425(6954): 200-5, 2003 Sep 11.
Article in English | MEDLINE | ID: mdl-12968185

ABSTRACT

The family of hyperpolarization-activated, cyclic nucleotide-modulated (HCN) channels are crucial for a range of electrical signalling, including cardiac and neuronal pacemaker activity, setting resting membrane electrical properties and dendritic integration. These nonselective cation channels, underlying the I(f), I(h) and I(q) currents of heart and nerve cells, are activated by membrane hyperpolarization and modulated by the binding of cyclic nucleotides such as cAMP and cGMP. The cAMP-mediated enhancement of channel activity is largely responsible for the increase in heart rate caused by beta-adrenergic agonists. Here we have investigated the mechanism underlying this modulation by studying a carboxy-terminal fragment of HCN2 containing the cyclic nucleotide-binding domain (CNBD) and the C-linker region that connects the CNBD to the pore. X-ray crystallographic structures of this C-terminal fragment bound to cAMP or cGMP, together with equilibrium sedimentation analysis, identify a tetramerization domain and the mechanism for cyclic nucleotide specificity, and suggest a model for ligand-dependent channel modulation. On the basis of amino acid sequence similarity to HCN channels, the cyclic nucleotide-gated, and eag- and KAT1-related families of channels are probably related to HCN channels in structure and mechanism.


Subject(s)
Cyclic AMP/metabolism , Cyclic GMP/metabolism , Ion Channels/chemistry , Ion Channels/metabolism , Nerve Tissue Proteins , Amino Acid Sequence , Animals , Binding Sites , Cyclic AMP/pharmacology , Cyclic GMP/pharmacology , Cyclic Nucleotide-Gated Cation Channels , Electric Conductivity , Hydrogen Bonding , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , Ion Channel Gating , Ion Channels/agonists , Ligands , Mice , Models, Molecular , Molecular Sequence Data , Patch-Clamp Techniques , Potassium Channels , Protein Conformation , Protein Subunits/chemistry , Protein Subunits/metabolism , Structure-Activity Relationship , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...