Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38895244

ABSTRACT

Hypoimmune gene edited human pluripotent stem cells (hPSCs) are a promising platform for developing reparative cellular therapies that evade immune rejection. Existing first-generation hypoimmune strategies have used CRISPR/Cas9 editing to modulate genes associated with adaptive (e.g., T cell) immune responses, but have largely not addressed the innate immune cells (e.g., monocytes, neutrophils) that mediate inflammation and rejection processes occurring early after graft transplantation. We identified the adhesion molecule ICAM-1 as a novel hypoimmune target that plays multiple critical roles in both adaptive and innate immune responses post-transplantation. In a series of studies, we found that ICAM-1 blocking or knock-out (KO) in hPSC-derived cardiovascular therapies imparted significantly diminished binding of multiple immune cell types. ICAM-1 KO resulted in diminished T cell proliferation responses in vitro and in longer in vivo retention/protection of KO grafts following immune cell encounter in NeoThy humanized mice. The ICAM-1 KO edit was also introduced into existing first-generation hypoimmune hPSCs and prevented immune cell binding, thereby enhancing the overall hypoimmune capacity of the cells. This novel hypoimmune editing strategy has the potential to improve the long-term efficacy and safety profiles of regenerative therapies for cardiovascular pathologies and a number of other diseases.

2.
STAR Protoc ; 3(3): 101609, 2022 09 16.
Article in English | MEDLINE | ID: mdl-35990742

ABSTRACT

This protocol describes a genetic model system we developed for glioblastoma (GBM) in Drosophila melanogaster, which can be used to explore the pathogenic phenotypic effects of mutated genetic pathways and to identify potential therapeutic targets for tumors with these mutations. We present genetic schemes and experimental steps needed to create neoplastic glial brain tumors in larval Drosophila. We also provide steps to manipulate genes in this model and to perform brain fixation, immunostaining, and imaging of neoplastic larval brains. For complete details on the use and execution of this protocol, please refer to Read et al., (2009).


Subject(s)
Glioblastoma , Glioma , Animals , Brain/diagnostic imaging , Drosophila melanogaster/genetics , Glioblastoma/genetics , Glioma/pathology , Humans , Larva/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...