Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 20(15): e2308390, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38037673

ABSTRACT

Compartments are a fundamental feature of life, based variously on lipid membranes, protein shells, or biopolymer phase separation. Here, this combines self-assembling bacterial microcompartment (BMC) shell proteins and liquid-liquid phase separation (LLPS) to develop new forms of compartmentalization. It is found that BMC shell proteins assemble at the liquid-liquid interfaces between either 1) the dextran-rich droplets and PEG-rich continuous phase of a poly(ethyleneglycol)(PEG)/dextran aqueous two-phase system, or 2) the polypeptide-rich coacervate droplets and continuous dilute phase of a polylysine/polyaspartate complex coacervate system. Interfacial protein assemblies in the coacervate system are sensitive to the ratio of cationic to anionic polypeptides, consistent with electrostatically-driven assembly. In both systems, interfacial protein assembly competes with aggregation, with protein concentration and polycation availability impacting coating. These two LLPS systems are then combined to form a three-phase system wherein coacervate droplets are contained within dextran-rich phase droplets. Interfacial localization of BMC hexameric shell proteins is tunable in a three-phase system by changing the polyelectrolyte charge ratio. The tens-of-micron scale BMC shell protein-coated droplets introduced here can accommodate bioactive cargo such as enzymes or RNA and represent a new synthetic cell strategy for organizing biomimetic functionality.


Subject(s)
Bacterial Proteins , Dextrans , Bacterial Proteins/metabolism
2.
Nano Lett ; 20(1): 208-217, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31747755

ABSTRACT

Enzymes of natural biochemical pathways are routinely subcellularly organized in space and time in order to improve pathway efficacy and control. Designer scaffolding platforms are under development to confer similar benefits upon engineered pathways. Herein, we evaluate bacterial microcompartment shell (pfam0936-domain) proteins as modules for constructing well-defined nanometer scale scaffolds in vivo. We use a suite of visualization techniques to evaluate scaffold assembly and dynamics. We demonstrate recruitment of target cargo molecules onto assembled scaffolds by appending reciprocally interacting adaptor domains. These interactions can be refined by fine-tuning the scaffold expression level. Real-time observation of this system reveals a nucleation-limited step where multiple scaffolds initially form within a cell. Over time, nucleated scaffolds reorganize into a single intracellular assembly, likely due to interscaffold competition for protein subunits. Our results suggest design considerations for using self-assembling proteins as building blocks to construct nanoscaffolds, while also providing a platform to visualize scaffold-cargo dynamics in vivo.


Subject(s)
Bacteria/chemistry , Nanostructures/chemistry , Bacteria/ultrastructure , Nanostructures/ultrastructure
3.
Article in English | MEDLINE | ID: mdl-31993414

ABSTRACT

Heme is a versatile redox cofactor that has considerable potential for synthetic biology and bioelectronic applications. The capacity to functionalize non-heme-binding proteins with covalently bound heme moieties in vivo could expand the variety of bioelectronic materials, particularly if hemes could be attached at defined locations so as to facilitate position-sensitive processes like electron transfer. In this study, we utilized the cytochrome maturation system I to develop a simple approach that enables incorporation of hemes into the backbone of target proteins in vivo. We tested our methodology by targeting the self-assembling bacterial microcompartment shell proteins, and inserting functional hemes at multiple locations in the protein backbone. We found substitution of three amino acids on the target proteins promoted heme attachment with high occupancy. Spectroscopic measurements suggested these modified proteins covalently bind low-spin hemes, with relative low redox midpoint potentials (about -210 mV vs. SHE). Heme-modified shell proteins partially retained their self-assembly properties, including the capacity to hexamerize, and form inter-hexamer attachments. Heme-bound shell proteins demonstrated the capacity to integrate into higher-order shell assemblies, however, the structural features of these macromolecular complexes was sometimes altered. Altogether, we report a versatile strategy for generating electron-conductive cytochromes from structurally-defined proteins, and provide design considerations on how heme incorporation may interface with native assembly properties in engineered proteins.

4.
Elife ; 72018 12 06.
Article in English | MEDLINE | ID: mdl-30520729

ABSTRACT

Carboxysomes are protein-based bacterial organelles encapsulating key enzymes of the Calvin-Benson-Bassham cycle. Previous work has implicated a ParA-like protein (hereafter McdA) as important for spatially organizing carboxysomes along the longitudinal axis of the model cyanobacterium Synechococcus elongatus PCC 7942. Yet, how self-organization of McdA emerges and contributes to carboxysome positioning is unknown. Here, we identify a small protein, termed McdB that localizes to carboxysomes and drives emergent oscillatory patterning of McdA on the nucleoid. Our results demonstrate that McdB directly stimulates McdA ATPase activity and its release from DNA, driving carboxysome-dependent depletion of McdA locally on the nucleoid and promoting directed motion of carboxysomes towards increased concentrations of McdA. We propose that McdA and McdB are a previously unknown class of self-organizing proteins that utilize a Brownian-ratchet mechanism to position carboxysomes in cyanobacteria, rather than a cytoskeletal system. These results have broader implications for understanding spatial organization of protein mega-complexes and organelles in bacteria.


Subject(s)
Bacterial Proteins/metabolism , Carbon/metabolism , Cyanobacteria/metabolism , Cytoplasmic Granules/metabolism , DNA, Bacterial/metabolism , Bacterial Proteins/genetics , Carbon Cycle , Carbon Dioxide/metabolism , Cyanobacteria/genetics , Cyanobacteria/ultrastructure , Cytoplasmic Granules/ultrastructure , DNA, Bacterial/genetics , Genome, Bacterial/genetics , Microscopy, Electron, Transmission , Models, Biological , Movement , Photosynthesis , Protein Binding , Synechococcus/genetics , Synechococcus/metabolism , Synechococcus/ultrastructure
5.
Metab Eng ; 44: 236-245, 2017 11.
Article in English | MEDLINE | ID: mdl-29061492

ABSTRACT

We previously reported that Synechococcus elongatus PCC 7942, engineered with the sucrose transporter CscB, can export up to 85% of its photosynthetically-fixed carbon as sucrose and shows considerable promise as an alternative carbohydrate source. One approach to effectively utilize this cyanobacterium is to generate synthetic, light-driven consortia in which sucrose-metabolizing heterotrophs catalyze the conversion of the low-value carbohydrate into higher-value compounds in co-culture. Here, we report an improved synthetic photoautotroph/chemoheterotroph consortial design in which sucrose secreted by S. elongatus CscB directly supports the bacterium Halomonas boliviensis, a natural producer of the bioplastic precursor, PHB. We show that alginate encapsulation of S. elongatus CscB enhances sucrose-export rates ~2-fold within 66h, to ~290mg sucrose L-1d-1 OD750-1 and enhances the co-culture stability. Consortial H. boliviensis accumulate up to 31% of their dry-weight as PHB, reaching productivities up to 28.3mg PHB L-1d-1. This light-driven, alginate-partitioned co-culture platform achieves PHB productivities that match or exceed those of traditionally engineered cyanobacterial monocultures. Importantly, S. elongatus CscB/H. boliviensis co-cultures were continuously productive for over 5 months and resisted invasive microbial species without the application of antibiotics or other chemical selection agents.


Subject(s)
Halomonas , Light , Microbial Consortia , Polymers/metabolism , Synechococcus , Halomonas/genetics , Halomonas/growth & development , Synechococcus/genetics , Synechococcus/growth & development
6.
Front Microbiol ; 8: 1441, 2017.
Article in English | MEDLINE | ID: mdl-28824573

ABSTRACT

As synthetic biology advances the intricacy of engineered biological systems, the importance of spatial organization within the cellular environment must not be marginalized. Increasingly, biological engineers are investigating means to control spatial organization within the cell, mimicking strategies used by natural pathways to increase flux and reduce cross-talk. A modular platform for constructing a diverse set of defined, programmable architectures would greatly assist in improving yields from introduced metabolic pathways and increasing insulation of other heterologous systems. Here, we review recent research on the shell proteins of bacterial microcompartments and discuss their potential application as "building blocks" for a range of customized intracellular scaffolds. We summarize the state of knowledge on the self-assembly of BMC shell proteins and discuss future avenues of research that will be important to realize the potential of BMC shell proteins as predictively assembling and programmable biological materials for bioengineering.

7.
Viruses ; 9(2)2017 02 14.
Article in English | MEDLINE | ID: mdl-28216551

ABSTRACT

Prior to the discovery of the mimivirus in 2003, viruses were thought to be physically small and genetically simple. Mimivirus, with its ~750-nm particle size and its ~1.2-Mbp genome, shattered these notions and changed what it meant to be a virus. Since this discovery, the isolation and characterization of giant viruses has exploded. One of the more recently discovered giant viruses, Samba virus, is a Mimivirus that was isolated from the Rio Negro in the Brazilian Amazon. Initial characterization of Samba has revealed some structural information, although the preparation techniques used are prone to the generation of structural artifacts. To generate more native-like structural information for Samba, we analyzed the virus through cryo-electron microscopy, cryo-electron tomography, scanning electron microscopy, and fluorescence microscopy. These microscopy techniques demonstrated that Samba particles have a capsid diameter of ~527 nm and a fiber length of ~155 nm, making Samba the largest Mimivirus yet characterized. We also compared Samba to a fiberless mimivirus variant. Samba particles, unlike those of mimivirus, do not appear to be rigid, and quasi-icosahedral, although the two viruses share many common features, including a multi-layered capsid and an asymmetric nucleocapsid, which may be common amongst the Mimiviruses.


Subject(s)
Mimiviridae/ultrastructure , Brazil , Capsid/ultrastructure , Microscopy , Mimiviridae/isolation & purification , Rivers/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...