Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
2.
BMC Med ; 22(1): 211, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38807170

ABSTRACT

BACKGROUND: This study evaluates longitudinal associations between glycaemic control, measured by mean and within-patient variability of glycated haemaglobin (HbA1c) levels, and major depressive disorder (MDD) in individuals with type 2 diabetes (T2D), focusing on the timings of these diagnoses. METHODS: In UK Biobank, T2D was defined using self-report and linked health outcome data, then validated using polygenic scores. Repeated HbA1c measurements (mmol/mol) over the 10 years following T2D diagnosis were outcomes in mixed effects models, with disease duration included using restricted cubic splines. Four MDD exposures were considered: MDD diagnosis prior to T2D diagnosis (pre-T2D MDD), time between pre-T2D MDD diagnosis and T2D, new MDD diagnosis during follow-up (post-T2D MDD) and time since post-T2D MDD diagnosis. Models with and without covariate adjustment were considered. RESULTS: T2D diagnostic criteria were robustly associated with T2D polygenic scores. In 11,837 T2D cases (6.9 years median follow-up), pre-T2D MDD was associated with a 0.92 increase in HbA1c (95% CI: [0.00, 1.84]), but earlier pre-T2D MDD diagnosis correlated with lower HbA1c. These pre-T2D MDD effects became non-significant after covariate adjustment. Post-T2D MDD individuals demonstrated increasing HbA1c with years since MDD diagnosis ( ß = 0.51 , 95% CI: [0.17, 0.86]). Retrospectively, across study follow-up, within-patient variability in HbA1c was 1.16 (95% CI: 1.13-1.19) times higher in post-T2D MDD individuals. CONCLUSIONS: The timing of MDD diagnosis is important for understanding glycaemic control in T2D. Poorer control was observed in MDD diagnosed post-T2D, highlighting the importance of depression screening in T2D, and closer monitoring for individuals who develop MDD after T2D.


Subject(s)
Biological Specimen Banks , Depressive Disorder, Major , Diabetes Mellitus, Type 2 , Glycated Hemoglobin , Glycemic Control , Primary Health Care , Humans , Diabetes Mellitus, Type 2/blood , Longitudinal Studies , Middle Aged , Male , Female , United Kingdom/epidemiology , Depressive Disorder, Major/blood , Depressive Disorder, Major/epidemiology , Glycated Hemoglobin/analysis , Aged , Adult , Cohort Studies , UK Biobank
3.
BMJ Open ; 14(1): e078135, 2024 01 31.
Article in English | MEDLINE | ID: mdl-38296292

ABSTRACT

OBJECTIVE: This study aimed to compare clinical and sociodemographic risk factors for severe COVID-19, influenza and pneumonia, in people with diabetes. DESIGN: Population-based cohort study. SETTING: UK primary care records (Clinical Practice Research Datalink) linked to mortality and hospital records. PARTICIPANTS: Individuals with type 1 and type 2 diabetes (COVID-19 cohort: n=43 033 type 1 diabetes and n=584 854 type 2 diabetes, influenza and pneumonia cohort: n=42 488 type 1 diabetes and n=585 289 type 2 diabetes). PRIMARY AND SECONDARY OUTCOME MEASURES: COVID-19 hospitalisation from 1 February 2020 to 31 October 2020 (pre-COVID-19 vaccination roll-out), and influenza and pneumonia hospitalisation from 1 September 2016 to 31 May 2019 (pre-COVID-19 pandemic). Secondary outcomes were COVID-19 and pneumonia mortality. Associations between clinical and sociodemographic risk factors and each outcome were assessed using multivariable Cox proportional hazards models. In people with type 2 diabetes, we explored modifying effects of glycated haemoglobin (HbA1c) and body mass index (BMI) by age, sex and ethnicity. RESULTS: In type 2 diabetes, poor glycaemic control and severe obesity were consistently associated with increased risk of hospitalisation for COVID-19, influenza and pneumonia. The highest HbA1c and BMI-associated relative risks were observed in people aged under 70 years. Sociodemographic-associated risk differed markedly by respiratory infection, particularly for ethnicity. Compared with people of white ethnicity, black and south Asian groups had a greater risk of COVID-19 hospitalisation, but a lesser risk of pneumonia hospitalisation. Risk factor associations for type 1 diabetes and for type 2 diabetes mortality were broadly consistent with the primary analysis. CONCLUSIONS: Clinical risk factors of high HbA1c and severe obesity are consistently associated with severe outcomes from COVID-19, influenza and pneumonia, especially in younger people. In contrast, associations with sociodemographic risk factors differed by type of respiratory infection. This emphasises that risk stratification should be specific to individual respiratory infections.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Influenza, Human , Obesity, Morbid , Pneumonia , Respiratory Tract Infections , Humans , Aged , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/epidemiology , COVID-19/epidemiology , Pandemics , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/epidemiology , Influenza, Human/epidemiology , Glycated Hemoglobin , Cohort Studies , COVID-19 Vaccines , Risk Factors , Pneumonia/epidemiology , Obesity/complications , Obesity/epidemiology , United Kingdom/epidemiology
4.
Cardiovasc Diabetol ; 22(1): 302, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37919773

ABSTRACT

Recent type 2 diabetes guidance from the UK's National Institute for Health and Care Excellence (NICE) proposes offering SGLT2-inhibitor therapy to people with established atherosclerotic cardiovascular disease (ASCVD) or heart failure, and considering SGLT2-inhibitor therapy for those at high-risk of cardiovascular disease defined as a 10-year cardiovascular risk of > 10% using the QRISK2 algorithm. We used a contemporary population-representative UK cohort of people with type 2 diabetes to assess the implications of this guidance. 93.1% of people currently on anti-hyperglycaemic treatment are now recommended or considered for SGLT2-inhibitor therapy under the new guidance, with the majority (59.6%) eligible on the basis of QRISK2 rather than established ASCVD or heart failure (33.6%). Applying these results to the approximately 2.20 million people in England currently on anti-hyperglycaemic medication suggests 1.75 million people will now be considered for additional SGLT2-inhibitor therapy, taking the total cost of SGLT2-inhibitor therapy in England to over £1 billion per year. Given that older people, those of non-white ethnic groups, and those at lower cardiovascular disease risk were underrepresented in the clinical trials which were used to inform this guidance, careful evaluation of the impact and safety of increased SGLT2-inhibitor prescribing across different populations is urgently required. Evidence of benefit should be weighed against the major cost implications for the UK National Health Service.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Heart Failure , Sodium-Glucose Transporter 2 Inhibitors , Humans , Aged , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/epidemiology , Sodium-Glucose Transporter 2 Inhibitors/adverse effects , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/prevention & control , Sodium-Glucose Transporter 2 , State Medicine , England
5.
Commun Med (Lond) ; 3(1): 131, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37794166

ABSTRACT

BACKGROUND: A precision medicine approach in type 2 diabetes requires the identification of clinical and biological features that are reproducibly associated with differences in clinical outcomes with specific anti-hyperglycaemic therapies. Robust evidence of such treatment effect heterogeneity could support more individualized clinical decisions on optimal type 2 diabetes therapy. METHODS: We performed a pre-registered systematic review of meta-analysis studies, randomized control trials, and observational studies evaluating clinical and biological features associated with heterogenous treatment effects for SGLT2-inhibitor and GLP1-receptor agonist therapies, considering glycaemic, cardiovascular, and renal outcomes. After screening 5,686 studies, we included 101 studies of SGLT2-inhibitors and 75 studies of GLP1-receptor agonists in the final systematic review. RESULTS: Here we show that the majority of included papers have methodological limitations precluding robust assessment of treatment effect heterogeneity. For SGLT2-inhibitors, multiple observational studies suggest lower renal function as a predictor of lesser glycaemic response, while markers of reduced insulin secretion predict lesser glycaemic response with GLP1-receptor agonists. For both therapies, multiple post-hoc analyses of randomized control trials (including trial meta-analysis) identify minimal clinically relevant treatment effect heterogeneity for cardiovascular and renal outcomes. CONCLUSIONS: Current evidence on treatment effect heterogeneity for SGLT2-inhibitor and GLP1-receptor agonist therapies is limited, likely reflecting the methodological limitations of published studies. Robust and appropriately powered studies are required to understand type 2 diabetes treatment effect heterogeneity and evaluate the potential for precision medicine to inform future clinical care.


This study reviews the available evidence on which patient features (such as age, sex, and blood test results) are associated with different outcomes for two recently introduced type 2 diabetes medications: SGLT2-inhibitors and GLP1-receptor agonists. Understanding what individual characteristics are associated with different response patterns may help clinical providers and people living with diabetes make more informed decisions about which type 2 diabetes treatments will work best for an individual. We focus on three outcomes: blood glucose levels (raised blood glucose is the primary symptom of diabetes and a primary aim of diabetes treatment is to lower this), heart disease, and kidney disease. We identified some potential factors that reduce effects on blood glucose levels, including poorer kidney function for SGLT2-inhibitors and lower production of the glucose-lowering hormone insulin for GLP1-receptor agonists. We did not identify clear factors that alter heart and kidney disease outcomes for either medication. Most of the studies had limitations, meaning more research is needed to fully understand the factors that influence treatment outcomes in type 2 diabetes.

8.
medRxiv ; 2023 Apr 22.
Article in English | MEDLINE | ID: mdl-37131814

ABSTRACT

Background: A precision medicine approach in type 2 diabetes requires identification of clinical and biological features that are reproducibly associated with differences in clinical outcomes with specific anti-hyperglycaemic therapies. Robust evidence of such treatment effect heterogeneity could support more individualized clinical decisions on optimal type 2 diabetes therapy. Methods: We performed a pre-registered systematic review of meta-analysis studies, randomized control trials, and observational studies evaluating clinical and biological features associated with heterogenous treatment effects for SGLT2-inhibitor and GLP1-receptor agonist therapies, considering glycaemic, cardiovascular, and renal outcomes. Results: After screening 5,686 studies, we included 101 studies of SGLT2-inhibitors and 75 studies of GLP1-receptor agonists in the final systematic review. The majority of papers had methodological limitations precluding robust assessment of treatment effect heterogeneity. For glycaemic outcomes, most cohorts were observational, with multiple analyses identifying lower renal function as a predictor of lesser glycaemic response with SGLT2-inhibitors and markers of reduced insulin secretion as predictors of lesser response with GLP1-receptor agonists. For cardiovascular and renal outcomes, the majority of included studies were post-hoc analyses of randomized control trials (including meta-analysis studies) which identified limited clinically relevant treatment effect heterogeneity. Conclusions: Current evidence on treatment effect heterogeneity for SGLT2-inhibitor and GLP1-receptor agonist therapies is limited, likely reflecting the methodological limitations of published studies. Robust and appropriately powered studies are required to understand type 2 diabetes treatment effect heterogeneity and evaluate the potential for precision medicine to inform future clinical care. Plain language summary: This review identifies research that helps understand which clinical and biological factors that are associated with different outcomes for specific type 2 diabetes treatments. This information could help clinical providers and patients make better informed personalized decisions about type 2 diabetes treatments. We focused on two common type 2 diabetes treatments: SGLT2-inhibitors and GLP1-receptor agonists, and three outcomes: blood glucose control, heart disease, and kidney disease. We identified some potential factors that are likely to lessen blood glucose control including lower kidney function for SGLT2-inhibitors and lower insulin secretion for GLP1-receptor agonists. We did not identify clear factors that alter heart and renal disease outcomes for either treatment. Most of the studies had limitations, meaning more research is needed to fully understand the factors that influence treatment outcomes in type 2 diabetes.

10.
Diabetologia ; 66(2): 300-309, 2023 02.
Article in English | MEDLINE | ID: mdl-36411396

ABSTRACT

AIMS/HYPOTHESIS: Screening programmes can detect cases of undiagnosed diabetes earlier than symptomatic or incidental diagnosis. However, the improvement in time to diagnosis achieved by screening programmes compared with routine clinical care is unclear. We aimed to use the UK Biobank population-based study to provide the first population-based estimate of the reduction in time to diabetes diagnosis that could be achieved by HbA1c-based screening in middle-aged adults. METHODS: We studied UK Biobank participants aged 40-70 years with HbA1c measured at enrolment (but not fed back to participants/clinicians) and linked primary and secondary healthcare data (n=179,923) and identified those with a pre-existing diabetes diagnosis (n=13,077, 7.3%). Among the remaining participants (n=166,846) without a diabetes diagnosis, we used an elevated enrolment HbA1c level (≥48 mmol/mol [≥6.5%]) to identify those with undiagnosed diabetes. For this group, we used Kaplan-Meier analysis to assess the time between enrolment HbA1c measurement and subsequent clinical diabetes diagnosis up to 10 years, and Cox regression to identify clinical factors associated with delayed diabetes diagnosis. RESULTS: In total, 1.0% (1703/166,846) of participants without a diabetes diagnosis had undiagnosed diabetes based on calibrated HbA1c levels at UK Biobank enrolment, with a median HbA1c level of 51.3 mmol/mol (IQR 49.1-57.2) (6.8% [6.6-7.4]). These participants represented an additional 13.0% of diabetes cases in the study population relative to the 13,077 participants with a diabetes diagnosis. The median time to clinical diagnosis for those with undiagnosed diabetes was 2.2 years, with a median HbA1c at clinical diagnosis of 58.2 mmol/mol (IQR 51.0-80.0) (7.5% [6.8-9.5]). Female participants with lower HbA1c and BMI measurements at enrolment experienced the longest delay to clinical diagnosis. CONCLUSIONS/INTERPRETATION: Our population-based study shows that HbA1c screening in adults aged 40-70 years can reduce the time to diabetes diagnosis by a median of 2.2 years compared with routine clinical care. The findings support the use of HbA1c screening to reduce the time for which individuals are living with undiagnosed diabetes.


Subject(s)
Delayed Diagnosis , Diabetes Mellitus , Middle Aged , Adult , Humans , Female , Biological Specimen Banks , Diabetes Mellitus/diagnosis , Diabetes Mellitus/epidemiology , Kaplan-Meier Estimate , United Kingdom/epidemiology
11.
J Clin Epidemiol ; 153: 34-44, 2023 01.
Article in English | MEDLINE | ID: mdl-36368478

ABSTRACT

OBJECTIVES: We aimed to compare the performance of approaches for classifying insulin-treated diabetes within research datasets without measured classification biomarkers, evaluated against two independent biological definitions of diabetes type. STUDY DESIGN AND SETTING: We compared accuracy of ten reported approaches for classifying insulin-treated diabetes into type 1 (T1D) and type 2 (T2D) diabetes in two cohorts: UK Biobank (UKBB) n = 26,399 and Diabetes Alliance for Research in England (DARE) n = 1,296. The overall performance for classifying T1D and T2D was assessed using: a T1D genetic risk score and genetic stratification method (UKBB); C-peptide measured at >3 years diabetes duration (DARE). RESULTS: Approaches' accuracy ranged from 71% to 88% (UKBB) and 68% to 88% (DARE). When classifying all participants, combining early insulin requirement with a T1D probability model (incorporating diagnosis age and body image issue [BMI]), and interview-reported diabetes type (UKBB available in only 15%) consistently achieved high accuracy (UKBB 87% and 87% and DARE 85% and 88%, respectively). For identifying T1D with minimal misclassification, models with high thresholds or young diagnosis age (<20 years) had highest performance. Findings were incorporated into an online tool identifying optimum approaches based on variable availability. CONCLUSION: Models combining continuous features with early insulin requirement are the most accurate methods for classifying insulin-treated diabetes in research datasets without measured classification biomarkers.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Humans , Young Adult , Adult , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/genetics , Risk Factors , Insulin/therapeutic use , Biomarkers
12.
Lancet Digit Health ; 4(12): e873-e883, 2022 12.
Article in English | MEDLINE | ID: mdl-36427949

ABSTRACT

BACKGROUND: Current treatment guidelines do not provide recommendations to support the selection of treatment for most people with type 2 diabetes. We aimed to develop and validate an algorithm to allow selection of optimal treatment based on glycaemic response, weight change, and tolerability outcomes when choosing between SGLT2 inhibitor or DPP-4 inhibitor therapies. METHODS: In this retrospective cohort study, we identified patients initiating SGLT2 and DPP-4 inhibitor therapies after Jan 1, 2013, from the UK Clinical Practice Research Datalink (CPRD). We excluded those who received SGLT2 or DPP-4 inhibitors as first-line treatment or insulin at the same time, had estimated glomerular filtration rate (eGFR) of less than 45 mL/min per 1·73 m2, or did not have a valid baseline glycated haemoglobin (HbA1c) measure (<53 or ≥120 mmol/mol). The primary efficacy outcome was the HbA1c value reached 6 months after drug initiation, adjusted for baseline HbA1c. Clinical features associated with differential HbA1c outcome on the two therapies were identified in CPRD (n=26 877), and replicated in reanalysis of 14 clinical trials (n=10 414). An algorithm to predict individual-level differential HbA1c outcome on the two therapies was developed in CPRD (derivation; n=14 069) and validated in head-to-head trials (n=2499) and CPRD (independent validation; n=9376). In CPRD, we further explored heterogeneity in 6-month weight change and treatment discontinuation. FINDINGS: Among 10 253 patients initiating SGLT2 inhibitors and 16 624 patients initiating DPP-4 inhibitors in CPRD, baseline HbA1c, age, BMI, eGFR, and alanine aminotransferase were associated with differential HbA1c outcome with SGLT2 inhibitor and DPP-4 inhibitor therapies. The median age of participants was 62·0 years (IQR 55·0-70·0). 10 016 (37·3%) were women and 16 861 (62·7%) were men. An algorithm based on these five features identified a subgroup, representing around four in ten CPRD patients, with a 5 mmol/mol or greater observed benefit with SGLT2 inhibitors in all validation cohorts (CPRD 8·8 mmol/mol [95% CI 7·8-9·8]; CANTATA-D and CANTATA-D2 trials 5·8 mmol/mol [3·9-7·7]; BI1245.20 trial 6·6 mmol/mol [2·2-11·0]). In CPRD, predicted differential HbA1c response with SGLT2 inhibitor and DPP-4 inhibitor therapies was not associated with weight change. Overall treatment discontinuation within 6 months was similar in patients predicted to have an HbA1c benefit with SGLT2 inhibitors over DPP-4 inhibitors (median 15·2% [13·2-20·3] vs 14·4% [12·9-16·7]). A smaller subgroup predicted to have greater HbA1c reduction with DPP-4 inhibitors were twice as likely to discontinue SGLT2 inhibitors than DPP-4 inhibitors (median 26·8% [23·4-31·0] vs 14·8% [12·9-16·8]). INTERPRETATION: A validated treatment selection algorithm for SGLT2 inhibitor and DPP-4 inhibitor therapies can support decisions on optimal treatment for people with type 2 diabetes. FUNDING: BHF-Turing Cardiovascular Data Science Award and the UK Medical Research Council.


Subject(s)
Diabetes Mellitus, Type 2 , Dipeptidyl-Peptidase IV Inhibitors , Sodium-Glucose Transporter 2 Inhibitors , Aged , Female , Humans , Male , Middle Aged , Algorithms , Diabetes Mellitus, Type 2/drug therapy , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Hypoglycemic Agents/therapeutic use , Retrospective Studies , Sodium-Glucose Transporter 2/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Clinical Trials as Topic
14.
Diabet Med ; 38(9): e14531, 2021 09.
Article in English | MEDLINE | ID: mdl-33501652

ABSTRACT

AIMS: Change in weight, HbA1c , lipids, blood pressure and cardiometabolic events over time is variable in individuals with type 2 diabetes. We hypothesised that people with a genetic predisposition to a more favourable adiposity distribution could have a less severe clinical course/progression. METHODS: We involved people with type 2 diabetes from two UK-based cohorts: 11,914 individuals with GP follow-up data from the UK Biobank and 723 from Salford. We generated a 'favourable adiposity' genetic score and conducted cross-sectional and longitudinal studies to test its association with weight, BMI, lipids, blood pressure, medication use and risk of myocardial infarction and stroke using 15 follow-up time points with 1-year intervals. RESULTS: The 'favourable adiposity' genetic score was cross-sectionally associated with higher weight (effect size per 1 standard deviation higher genetic score: 0.91 kg [0.59,1.23]) and BMI (0.30 kg/m2 [0.19,0.40]), but higher high-density lipoprotein (0.02 mmol/L [0.01,0.02]) and lower triglycerides (-0.04 mmol/L [-0.07, -0.02]) in the UK Biobank at baseline, and this pattern of association was consistent across follow-up. There was a trend for participants with higher 'favourable adiposity' genetic score to have lower risk of myocardial infarction and/or stroke (odds ratio 0.79 [0.62, 1.00]) compared to those with lower score. A one standard deviation higher score was associated with lower odds of using lipid-lowering (0.91 [0.86, 0.97]) and anti-hypertensive medication (0.95 [0.91, 0.99]). CONCLUSIONS: In individuals with type 2 diabetes, having more 'favourable adiposity' alleles is associated with a marginally better lipid profile long-term and having lower odds of requiring lipid-lowering or anti-hypertensive medication in spite of relatively higher adiposity.


Subject(s)
Adiposity/genetics , Blood Pressure/physiology , Diabetes Mellitus, Type 2/complications , Genetic Predisposition to Disease , Metabolome/genetics , Obesity/complications , Adult , Aged , Body Mass Index , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Female , Follow-Up Studies , Humans , Male , Middle Aged , Obesity/genetics , Obesity/metabolism
15.
Angew Chem Int Ed Engl ; 59(37): 15942-15946, 2020 09 07.
Article in English | MEDLINE | ID: mdl-32524699

ABSTRACT

DNA self-assembly allows the construction of nanometre-scale structures and devices. Structures with thousands of unique components are routinely assembled in good yield. Experimental progress has been rapid, based largely on empirical design rules. Herein, we demonstrate a DNA origami technique designed as a model system with which to explore the mechanism of assembly. The origami fold is controlled through single-stranded loops embedded in a double-stranded DNA template and is programmed by a set of double-stranded linkers that specify pairwise interactions between loop sequences. Assembly is via T-junctions formed by hybridization of single-stranded overhangs on the linkers with the loops. The sequence of loops on the template and the set of interaction rules embodied in the linkers can be reconfigured with ease. We show that a set of just two interaction rules can be used to assemble simple T-junction origami motifs and that assembly can be performed at room temperature.

SELECTION OF CITATIONS
SEARCH DETAIL
...