Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Main subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(24): e2320215121, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38830103

ABSTRACT

The Kuiper Belt object (KBO) Arrokoth, the farthest object in the Solar System ever visited by a spacecraft, possesses a distinctive reddish surface and is characterized by pronounced spectroscopic features associated with methanol. However, the fundamental processes by which methanol ices are converted into reddish, complex organic molecules on Arrokoth's surface have remained elusive. Here, we combine laboratory simulation experiments with a spectroscopic characterization of methanol ices exposed to proxies of galactic cosmic rays (GCRs). Our findings reveal that the surface exposure of methanol ices at 40 K can replicate the color slopes of Arrokoth. Sugars and their derivatives (acids, alcohols) with up to six carbon atoms, including glucose and ribose-fundamental building block of RNA-were ubiquitously identified. In addition, polycyclic aromatic hydrocarbons (PAHs) with up to six ring units (13C22H12) were also observed. These sugars and their derivatives along with PAHs connected by unsaturated linkers represent key molecules rationalizing the reddish appearance of Arrokoth. The formation of abundant sugar-related molecules dubs Arrokoth as a sugar world and provides a plausible abiotic preparation route for a key class of biorelevant molecules on the surface of KBOs prior to their delivery to prebiotic Earth.

2.
Sci Adv ; 9(22): eadg6936, 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37256949

ABSTRACT

Kuiper Belt objects exhibit a wider color range than any other solar system population. The origin of this color diversity is unknown, but likely the result of the prolonged irradiation of organic materials by galactic cosmic rays (GCRs). Here, we combine ultrahigh-vacuum irradiation experiments with comprehensive spectroscopic analyses to examine the color evolution during GCR processing methane and acetylene under Kuiper Belt conditions. This study replicates the colors of a population of Kuiper Belt objects such as Makemake, Orcus, and Salacia. Aromatic structural units carrying up to three rings as in phenanthrene (C14H10), phenalene (C9H10), and acenaphthylene (C12H8), of which some carry structural motives of DNA and RNA connected via unsaturated linkers, were found to play a key role in producing the reddish colors. These studies demonstrate the level of molecular complexity synthesized of GCR processing hydrocarbon and hint at the role played by irradiated ice in the early production of biological precursor molecules.

3.
Nat Commun ; 13(1): 1542, 2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35351895

ABSTRACT

The New Horizons spacecraft returned images and compositional data showing that terrains on Pluto span a variety of ages, ranging from relatively ancient, heavily cratered areas to very young surfaces with few-to-no impact craters. One of the regions with very few impact craters is dominated by enormous rises with hummocky flanks. Similar features do not exist anywhere else in the imaged solar system. Here we analyze the geomorphology and composition of the features and conclude this region was resurfaced by cryovolcanic processes, of a type and scale so far unique to Pluto. Creation of this terrain requires multiple eruption sites and a large volume of material (>104 km3) to form what we propose are multiple, several-km-high domes, some of which merge to form more complex planforms. The existence of these massive features suggests Pluto's interior structure and evolution allows for either enhanced retention of heat or more heat overall than was anticipated before New Horizons, which permitted mobilization of water-ice-rich materials late in Pluto's history.

4.
Nat Commun ; 13(1): 240, 2022 Jan 11.
Article in English | MEDLINE | ID: mdl-35017491

ABSTRACT

Pluto, Titan, and Triton make up a unique class of solar system bodies, with icy surfaces and chemically reducing atmospheres rich in organic photochemistry and haze formation. Hazes play important roles in these atmospheres, with physical and chemical processes highly dependent on particle sizes, but the haze size distribution in reducing atmospheres is currently poorly understood. Here we report observational evidence that Pluto's haze particles are bimodally distributed, which successfully reproduces the full phase scattering observations from New Horizons. Combined with previous simulations of Titan's haze, this result suggests that haze particles in reducing atmospheres undergo rapid shape change near pressure levels ~0.5 Pa and favors a photochemical rather than a dynamical origin for the formation of Titan's detached haze. It also demonstrates that both oxidizing and reducing atmospheres can produce multi-modal hazes, and encourages reanalysis of observations of hazes on Titan and Triton.

5.
Phys Chem Chem Phys ; 24(3): 1424-1436, 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-34982080

ABSTRACT

NASA's New Horizons mission unveiled a diverse landscape of Pluto's surface with massive regions being neutral in color, while others like Cthulhu Macula range from golden-yellow to reddish comprising up to half of Pluto's carbon budget. Here, we demonstrate in laboratory experiments merged with electronic structure calculations that the photolysis of solid acetylene - the most abundant precipitate on Pluto's surface - by low energy ultraviolet photons efficiently synthesizes benzene and polycyclic aromatic hydrocarbons via excited state photochemistry thus providing critical molecular building blocks for the colored surface material. Since low energy photons deliver doses to Pluto's surface exceeding those from cosmic rays by six orders of magnitude, these processes may significantly contribute to the coloration of Pluto's surface and of hydrocarbon-covered surfaces of Solar System bodies such as Triton in general. This discovery critically enhances our perception of the distribution of aromatic molecules and carbon throughout our Solar System.

6.
Science ; 360(6392): 992-997, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29853681

ABSTRACT

The surface of Pluto is more geologically diverse and dynamic than had been expected, but the role of its tenuous atmosphere in shaping the landscape remains unclear. We describe observations from the New Horizons spacecraft of regularly spaced, linear ridges whose morphology, distribution, and orientation are consistent with being transverse dunes. These are located close to mountainous regions and are orthogonal to nearby wind streaks. We demonstrate that the wavelength of the dunes (~0.4 to 1 kilometer) is best explained by the deposition of sand-sized (~200 to ~300 micrometer) particles of methane ice in moderate winds (<10 meters per second). The undisturbed morphology of the dunes, and relationships with the underlying convective glacial ice, imply that the dunes have formed in the very recent geological past.

7.
Science ; 351(6279): 1284-93, 2016 Mar 18.
Article in English | MEDLINE | ID: mdl-26989245

ABSTRACT

NASA's New Horizons spacecraft has revealed the complex geology of Pluto and Charon. Pluto's encounter hemisphere shows ongoing surface geological activity centered on a vast basin containing a thick layer of volatile ices that appears to be involved in convection and advection, with a crater retention age no greater than ~10 million years. Surrounding terrains show active glacial flow, apparent transport and rotation of large buoyant water-ice crustal blocks, and pitting, the latter likely caused by sublimation erosion and/or collapse. More enigmatic features include tall mounds with central depressions that are conceivably cryovolcanic and ridges with complex bladed textures. Pluto also has ancient cratered terrains up to ~4 billion years old that are extensionally faulted and extensively mantled and perhaps eroded by glacial or other processes. Charon does not appear to be currently active, but experienced major extensional tectonism and resurfacing (probably cryovolcanic) nearly 4 billion years ago. Impact crater populations on Pluto and Charon are not consistent with the steepest impactor size-frequency distributions proposed for the Kuiper belt.

8.
Science ; 351(6279): aad8866, 2016 03 18.
Article in English | MEDLINE | ID: mdl-26989258

ABSTRACT

Observations made during the New Horizons flyby provide a detailed snapshot of the current state of Pluto's atmosphere. Whereas the lower atmosphere (at altitudes of less than 200 kilometers) is consistent with ground-based stellar occultations, the upper atmosphere is much colder and more compact than indicated by pre-encounter models. Molecular nitrogen (N2) dominates the atmosphere (at altitudes of less than 1800 kilometers or so), whereas methane (CH4), acetylene (C2H2), ethylene (C2H4), and ethane (C2H6) are abundant minor species and likely feed the production of an extensive haze that encompasses Pluto. The cold upper atmosphere shuts off the anticipated enhanced-Jeans, hydrodynamic-like escape of Pluto's atmosphere to space. It is unclear whether the current state of Pluto's atmosphere is representative of its average state--over seasonal or geologic time scales.

9.
Science ; 318(5848): 226-9, 2007 Oct 12.
Article in English | MEDLINE | ID: mdl-17932285

ABSTRACT

Although lightning has been seen on other planets, including Jupiter, polar lightning has been known only on Earth. Optical observations from the New Horizons spacecraft have identified lightning at high latitudes above Jupiter up to 80 degrees N and 74 degrees S. Lightning rates and optical powers were similar at each pole, and the mean optical flux is comparable to that at nonpolar latitudes, which is consistent with the notion that internal heat is the main driver of convection. Both near-infrared and ground-based 5-micrometer thermal imagery reveal that cloud cover has thinned substantially since the 2000 Cassini flyby, particularly in the turbulent wake of the Great Red Spot and in the southern half of the equatorial region, demonstrating that vertical dynamical processes are time-varying on seasonal scales at mid- and low latitudes on Jupiter.

10.
Science ; 318(5848): 229-31, 2007 Oct 12.
Article in English | MEDLINE | ID: mdl-17932286

ABSTRACT

Observations of Jupiter's nightside airglow (nightglow) and aurora obtained during the flyby of the New Horizons spacecraft show an unexpected lack of ultraviolet nightglow emissions, in contrast to the case during the Voyager flybys in 1979. The flux and average energy of precipitating electrons generally decrease with increasing local time across the nightside, consistent with a possible source region along the dusk flank of Jupiter's magnetosphere. Visible emissions associated with the interaction of Jupiter and its satellite Io extend to a surprisingly high altitude, indicating localized low-energy electron precipitation. These results indicate that the interaction between Jupiter's upper atmosphere and near-space environment is variable and poorly understood; extensive observations of the day side are no guide to what goes on at night.


Subject(s)
Jupiter , Extraterrestrial Environment , Hydrocarbons , Hydrogen , Magnetics , Spacecraft
SELECTION OF CITATIONS
SEARCH DETAIL
...