Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(7): e0287960, 2023.
Article in English | MEDLINE | ID: mdl-37432919

ABSTRACT

Massive declines in sea ice cover and widespread warming seawaters across the Pacific Arctic region over the past several decades have resulted in profound shifts in marine ecosystems that have cascaded throughout all trophic levels. The Distributed Biological Observatory (DBO) provides sampling infrastructure for a latitudinal gradient of biological "hotspot" regions across the Pacific Arctic region, with eight sites spanning the northern Bering, Chukchi, and Beaufort Seas. The purpose of this study is two-fold: (a) to provide an assessment of satellite-based environmental variables for the eight DBO sites (including sea surface temperature (SST), sea ice concentration, annual sea ice persistence and the timing of sea ice breakup/formation, chlorophyll-a concentrations, primary productivity, and photosynthetically available radiation (PAR)) as well as their trends across the 2003-2020 time period; and (b) to assess the importance of sea ice presence/open water for influencing primary productivity across the region and for the eight DBO sites in particular. While we observe significant trends in SST, sea ice, and chlorophyll-a/primary productivity throughout the year, the most significant and synoptic trends for the DBO sites have been those during late summer and autumn (warming SST during October/November, later shifts in the timing of sea ice formation, and increases in chlorophyll-a/primary productivity during August/September). Those DBO sites where significant increases in annual primary productivity over the 2003-2020 time period have been observed include DBO1 in the Bering Sea (37.7 g C/m2/year/decade), DBO3 in the Chukchi Sea (48.0 g C/m2/year/decade), and DBO8 in the Beaufort Sea (38.8 g C/m2/year/decade). The length of the open water season explains the variance of annual primary productivity most strongly for sites DBO3 (74%), DBO4 in the Chukchi Sea (79%), and DBO6 in the Beaufort Sea (78%), with DBO3 influenced most strongly with each day of additional increased open water (3.8 g C/m2/year per day). These synoptic satellite-based observations across the suite of DBO sites will provide the legacy groundwork necessary to track additional and inevitable future physical and biological change across the region in response to ongoing climate warming.


Subject(s)
Ecosystem , Ice Cover , Seasons , Arctic Regions , Chlorophyll , Chlorophyll A , Water
2.
PLoS One ; 10(7): e0132590, 2015.
Article in English | MEDLINE | ID: mdl-26173108

ABSTRACT

Quasi-experimental methods increasingly are used to evaluate the impacts of conservation interventions by generating credible estimates of counterfactual baselines. These methods generally require large samples for statistical comparisons, presenting a challenge for evaluating innovative policies implemented within a few pioneering jurisdictions. Single jurisdictions often are studied using comparative methods, which rely on analysts' selection of best case comparisons. The synthetic control method (SCM) offers one systematic and transparent way to select cases for comparison, from a sizeable pool, by focusing upon similarity in outcomes before the intervention. We explain SCM, then apply it to one local initiative to limit deforestation in the Brazilian Amazon. The municipality of Paragominas launched a multi-pronged local initiative in 2008 to maintain low deforestation while restoring economic production. This was a response to having been placed, due to high deforestation, on a federal "blacklist" that increased enforcement of forest regulations and restricted access to credit and output markets. The local initiative included mapping and monitoring of rural land plus promotion of economic alternatives compatible with low deforestation. The key motivation for the program may have been to reduce the costs of blacklisting. However its stated purpose was to limit deforestation, and thus we apply SCM to estimate what deforestation would have been in a (counterfactual) scenario of no local initiative. We obtain a plausible estimate, in that deforestation patterns before the intervention were similar in Paragominas and the synthetic control, which suggests that after several years, the initiative did lower deforestation (significantly below the synthetic control in 2012). This demonstrates that SCM can yield helpful land-use counterfactuals for single units, with opportunities to integrate local and expert knowledge and to test innovations and permutations on policies that are implemented in just a few locations.


Subject(s)
Conservation of Natural Resources/legislation & jurisprudence , Forests , Brazil , Climate Change/statistics & numerical data , Conservation of Natural Resources/economics , Conservation of Natural Resources/statistics & numerical data , Ecosystem , Models, Statistical , Public Policy/economics , Public Policy/legislation & jurisprudence , Trees , Tropical Climate
SELECTION OF CITATIONS
SEARCH DETAIL
...