Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 202
Filter
1.
J Aerosol Med Pulm Drug Deliv ; 37(2): 100-110, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38640446

ABSTRACT

Inhalation of liposomes formulated with phospholipids similar to endogenous lung surfactants and lipids offers biocompatibility and versatility within the pulmonary medicine field to treat a range of diseases such as lung cancer, cystic fibrosis and lung infections. Manipulation of the physicochemical properties of liposomes enables innovative design of the carrier to meet specific delivery, release and targeting requirements. This delivery system offers several benefits: improved pharmacokinetics with reduced toxicity, enhanced therapeutic efficacy, increased delivery of poorly soluble drugs, taste masking, biopharmaceutics degradation protection and targeted cellular therapy. This section provides an overview of liposomal formulation and delivery, together with their applications for different disease states in the lung.


Subject(s)
Liposomes , Pneumonia , Humans , Liposomes/chemistry , Liposomes/metabolism , Administration, Inhalation , Lung/metabolism , Phospholipids , Drug Delivery Systems
2.
Int J Pharm ; 650: 123694, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38081562

ABSTRACT

A swirling airflow is incorporated in several dry powder inhalers (DPIs) for effective powder de-agglomeration. This commonly requires the use of a flow-straightening grid in the DPI to reduce drug deposition loss caused by large lateral spreading of the emerging aerosol. Here, we propose a novel grid-free DPI design concept that improves the aerosol flow characteristics and reduces the aforementioned drug loss. The basis of this design is the implementation of a secondary airflow that swirls in the opposite direction (counter-swirl) to that of a primary swirling airflow. In-vitro deposition, computational fluid dynamics simulations and particle image velocimetry measurements are used to evaluate the counter-swirl DPI aerosol performance and flow characteristics. In comparison with a baseline-DPI that has only a primary swirling airflow, the counter-swirl DPI has 20% less deposition of the emitted drug dose in the induction port and pre-separator of a next generation impactor (NGI). This occurs as a result of the lower flow-swirl generated from the counter-swirl DPI which eliminates the axial reverse flow outside of the mouthpiece and substantially reduces lateral spreading in the exiting aerosol. Modifications to the counter-swirl DPI design were made to prevent drug loss from the secondary airflow tangential inlets, which involved the addition of wall perforations in the tangential inlets and the separation of the primary and secondary swirling airflows by an annular channel. These modified DPI devices were successful in that aspect but had higher flow-swirl than that in the counter-swirl DPI and thus had higher drug mass retained in the device and deposited in the induction port and pre-separator of the NGI. The fine particle fraction in the aerosols generated from all the counter-swirl-based DPIs and the baseline-DPI are found to be statistically similar to each other.


Subject(s)
Dry Powder Inhalers , Lung , Dry Powder Inhalers/methods , Particle Size , Aerosols , Administration, Inhalation , Equipment Design , Powders
3.
Pharmaceutics ; 15(4)2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37111594

ABSTRACT

Technegas was developed in Australia as an imaging radioaerosol in the late 1980s and is now commercialized by Cyclomedica, Pty Ltd. for diagnosing pulmonary embolism (PE). Technegas is produced by heating technetium-99m in a carbon crucible for a few seconds at high temperatures (2750 °C) to generate technetium-carbon nanoparticles with a gas-like behaviour. The submicron particulates formed allow easy diffusion to the lung periphery when inhaled. Technegas has been used for diagnosis in over 4.4 m patients across 60 countries and now offers exciting opportunities in areas outside of PE, including asthma and chronic obstructive pulmonary disease (COPD). The Technegas generation process and the physicochemical attributes of the aerosol have been studied over the past 30 years in parallel with the advancement in different analytical methodologies. Thus, it is now well established that the Technegas aerosol has a radioactivity aerodynamic diameter of <500 nm and is composed of agglomerated nanoparticles. With a plethora of literature studying different aspects of Technegas, this review focuses on a historical evaluation of the different methodologies' findings over the years that provides insight into a scientific consensus of this technology. Also, we briefly discuss recent clinical innovations using Technegas and a brief history of Technegas patents.

4.
Drug Deliv Transl Res ; 13(5): 1405-1419, 2023 05.
Article in English | MEDLINE | ID: mdl-36786980

ABSTRACT

To simulate the deposition of drugs in the oro-pharynx region, several in vitro models are available such as the United States Pharmacopeia-Induction Port (USP-IP) throat and the Virginia Commonwealth University (VCU) models. However, currently, there is no such in vitro model that incorporates a biological barrier to elucidate drug transport across the pharyngeal cells. Cellular models such as in vitro air-liquid interface (ALI) models of human respiratory epithelial cell lines are extensively used to study drug transport. To date, no studies have yet been performed to optimise the ALI culture conditions of the human pharyngeal cell line Detroit 562 and determine whether it could be used for drug transport. Therefore, this study aimed to develop a novel 3D-printed throat model integrated with an ALI cellular model of Detroit 562 cells and optimise the culture conditions to investigate whether the combined model could be used to study drug transport, using Lidocaine as a model drug. Differentiating characteristics specific to airway epithelia were assessed using 3 seeding densities (30,000, 60,000, and 80,000 cells/well (c/w), respectively) over 21 days. The results showed that Detroit 562 cells completely differentiates on day 18 of ALI for both 60,000 and 80,000 c/w with significant mucus production, showing response to bacterial and viral stimuli and development of functional tight junctions and Lidocaine transport with no significant differences observed between the ALI models with the 2 cell seeding densities. Results showed the suitability of the Low density (60,000 c/w or 1.8 × 105 cells/cm2) ALI model to study drug transport. Importantly, the developed novel 3D-printed throat model integrated with our optimised in vitro Detroit 562 ALI model showed transport of Lidocaine throat spray. Overall, the study highlights the potential of the novel 3D-printed bio-throat integrated model as a promising in vitro system to investigate the transport of inhalable drug therapies targeted at the oro-pharyngeal region.


Subject(s)
Nebulizers and Vaporizers , Pharynx , Humans , Cell Line , Epithelial Cells , Printing, Three-Dimensional
5.
Adv Healthc Mater ; 11(23): e2201714, 2022 12.
Article in English | MEDLINE | ID: mdl-36148581

ABSTRACT

Injectable hydrogels can support the body's innate healing capability by providing a temporary matrix for host cell ingrowth and neovascularization. The clinical adoption of current injectable systems remains low due to their cumbersome preparation requirements, device malfunction, product dislodgment during administration, and uncontrolled biological responses at the treatment site. To address these challenges, a fully synthetic and ready-to-use injectable biomaterial is engineered that forms an adhesive hydrogel that remains at the administration site regardless of defect anatomy. The product elicits a negligible local inflammatory response and fully resorbs into nontoxic components with minimal impact on internal organs. Preclinical animal studies confirm that the engineered hydrogel upregulates the regeneration of both soft and hard tissues by providing a temporary matrix to support host cell ingrowth and neovascularization. In a pilot clinical trial, the engineered hydrogel is successfully administered to a socket site post tooth extraction and forms adhesive hydrogel that stabilizes blood clot and supports soft and hard tissue regeneration. Accordingly, this injectable hydrogel exhibits high therapeutic potential and can be adopted to address multiple unmet needs in different clinical settings.


Subject(s)
Hydrogels , Hydrogels/pharmacology
6.
Bioengineering (Basel) ; 9(4)2022 Apr 02.
Article in English | MEDLINE | ID: mdl-35447710

ABSTRACT

Developing novel drug formulations and progressing them to the clinical environment relies on preclinical in vitro studies and animal tests to evaluate efficacy and toxicity. However, these current techniques have failed to accurately predict the clinical success of new therapies with a high degree of certainty. The main reason for this failure is that conventional in vitro tissue models lack numerous physiological characteristics of human organs, such as biomechanical forces and biofluid flow. Moreover, animal models often fail to recapitulate the physiology, anatomy, and mechanisms of disease development in human. These shortfalls often lead to failure in drug development, with substantial time and money spent. To tackle this issue, organ-on-chip technology offers realistic in vitro human organ models that mimic the physiology of tissues, including biomechanical forces, stress, strain, cellular heterogeneity, and the interaction between multiple tissues and their simultaneous responses to a therapy. For the latter, complex networks of multiple-organ models are constructed together, known as multiple-organs-on-chip. Numerous studies have demonstrated successful application of organ-on-chips for drug testing, with results comparable to clinical outcomes. This review will summarize and critically evaluate these studies, with a focus on kidney, liver, and respiratory system-on-chip models, and will discuss their progress in their application as a preclinical drug-testing platform to determine in vitro drug toxicology, metabolism, and transport. Further, the advances in the design of these models for improving preclinical drug testing as well as the opportunities for future work will be discussed.

7.
Food Chem Toxicol ; 163: 112976, 2022 May.
Article in English | MEDLINE | ID: mdl-35364129

ABSTRACT

Curcumin has been used for chronic lung diseases management due to its diversified molecular actions. However, the potential cytotoxicity which occurs in cells following the exposure to high concentrations of curcumin has been overlooked. This study evaluated the toxic events of curcumin nanoparticles (Cur-NPs) with alterable surface polarity in alveolar macrophages (NR8383). We aimed to establish the correlation between the toxicity of Cur-NPs with different surface charges and the internalization mechanisms of the NPs. Toxicity data showed that positively charged Cur-NPs (IC50: 9.77 ± 0.5 µg/mL) was the most potent against NR8383, followed by negatively charged Cur-NPs (IC50:13.33 ± 0.9 µg/mL) and neutral Cur-NPs (IC50:18.68 ± 1.2 µg/mL). Results from mitochondrial membrane potential, ATP content and intracellular ROS in NR8383 showed similar ranking to the toxicity assay. The predominant uptake pathway for positively and negatively charged Cur-NPs was via clathrin-mediated endocytosis, while neutral Cur-NPs was internalized via phagocytosis, micropinocytosis and clathrin-mediated endocytosis. Positively charged Cur-NPs mediates the cytotoxicity of NR8383 via lysosomal and mitochondrial-associated destabilization upon entry. In conclusion, the cytotoxicity of Cur-NPs on NR8383 is surface-charge dependent, which in turn is associated to the uptake pathway and localization of Cur-NPs in cells.


Subject(s)
Curcumin , Macrophages, Alveolar/drug effects , Nanoparticles , Clathrin , Curcumin/toxicity , Drug Delivery Systems , Endocytosis , Nanoparticles/toxicity
8.
Expert Opin Drug Deliv ; 19(1): 75-86, 2022 01.
Article in English | MEDLINE | ID: mdl-35043744

ABSTRACT

INTRODUCTION: Lymphangioleiomyomatosis (LAM) is a rare lung disease that is characterized by smooth muscle-like cell growth in the lungs. The current available oral treatment rapamycin slows down the disease progression but does not result in a cure. Rapamycin is also limited by its low bioavailability and dose-related adverse side effects. New treatments are, therefore, underway to investigate alternative targets and combination therapies for LAM. In recent years, much focus has been on the development of therapies based on inhaled nanotechnology using carriers to deliver drugs, as it is shown to improve drug solubility, local targeted treatment, and bioavailability. AREAS COVERED: This review, therefore, focuses on future prospective treatments for LAM using nanoparticles and lipid-based nanocarriers, including liposomes, solid lipid nanoparticles, micelles, and polymeric nanoparticles. It also investigates how nanoparticles' physicochemical factors such as size and charge can affect the treatment of both pulmonary and extrapulmonary LAM. EXPERT OPINION: Advanced clinical research is still needed to demonstrate the full potential and drive future commercialization of LAM treatments delivered via inhaled lipid nanobased formulations. If successful, the resultant effects will be seen in the improvement in the life expectancy and life quality of LAM patients.


Subject(s)
Lymphangioleiomyomatosis , Nanoparticles , Humans , Lipids/therapeutic use , Liposomes , Lymphangioleiomyomatosis/drug therapy , Sirolimus/therapeutic use
9.
Pharmaceutics ; 15(1)2022 Dec 31.
Article in English | MEDLINE | ID: mdl-36678775

ABSTRACT

A central characteristic of emphysematous progression is the continuous destruction of the lung extracellular matrix (ECM). Current treatments for emphysema have only addressed symptoms rather than preventing or reversing the loss of lung ECM. Nitrofurantoin (NF) is an antibiotic that has the potential to induce lung fibrosis as a side effect upon oral administration. Our study aims to repurpose NF as an inhalable therapeutic strategy to upregulate ECM expression, thereby reversing the disease progression within the emphysematous lung. Spray-dried (SD) formulations of NF were prepared in conjunction with a two-fluid nozzle (2FN) and three-fluid nozzle (3FN) using hydroxypropyl methylcellulose (HPMC) and NF at 1:1 w/w. The formulations were characterized for their physicochemical properties (particle size, morphology, solid-state characteristics, aerodynamic behaviour, and dissolution properties) and characterized in vitro with efficacy studies on human lung fibroblasts. The 2FN formulation displayed a mass mean aerodynamic diameter (MMAD) of 1.8 ± 0.05 µm and fine particle fraction (FPF) of 87.4 ± 2.8% with significantly greater deposition predicted in the lower lung region compared to the 3FN formulation (MMAD: 4.4 ± 0.4 µm; FPF: 40 ± 5.8%). Furthermore, drug dissolution studies showed that NF released from the 2FN formulation after 3 h was significantly higher (55.7%) as compared to the 3FN formulation (42.4%). Importantly, efficacy studies in human lung fibroblasts showed that the 2FN formulation induced significantly enhanced ECM protein expression levels of periostin and Type IV Collagen (203.2% and 84.2% increase, respectively) compared to untreated cells, while 3FN formulations induced only a 172.5% increase in periostin and a 38.1% increase in type IV collagen. In conclusion, our study highlights the influence of nozzle choice in inhalable spray-dried formulations and supports the feasibility of using SD NF prepared using 2FN as a potential inhalable therapeutic agent to upregulate ECM protein production.

10.
Bioengineering (Basel) ; 8(8)2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34436113

ABSTRACT

The emphysema death toll has steadily risen over recent decades, causing the disease to become the third most common cause of death worldwide in 2019. Emphysema is currently incurable and could be due to a genetic condition (Alpha-1 antitrypsin deficiency) or exposure to pollutants/irritants, such as cigarette smoke or poorly ventilated cooking fires. Despite the growing burden of emphysema, the mechanisms behind emphysematous pathogenesis and progression are not fully understood by the scientific literature. A key aspect of emphysematous progression is the destruction of the lung parenchyma extracellular matrix (ECM), causing a drastic shift in the mechanical properties of the lung (known as mechanobiology). The mechanical properties of the lung such as the stiffness of the parenchyma (measured as the elastic modulus) and the stretch forces required for inhalation and exhalation are both reduced in emphysema. Fibroblasts function to maintain the structural and mechanical integrity of the lung parenchyma, yet, in the context of emphysema, these fibroblasts appear incapable of repairing the ECM, allowing emphysema to progress. This relationship between the disturbances in the mechanical cues experienced by an emphysematous lung and fibroblast behaviour is constantly overlooked and consequently understudied, thus warranting further research. Interestingly, the failure of current research models to integrate the altered mechanical environment of an emphysematous lung may be limiting our understanding of emphysematous pathogenesis and progression, potentially disrupting the development of novel treatments. This review will focus on the significance of emphysematous lung mechanobiology to fibroblast activity and current research limitations by examining: (1) the impact of mechanical cues on fibroblast activity and the cell cycle, (2) the potential role of mechanical cues in the diminished activity of emphysematous fibroblasts and, finally, (3) the limitations of current emphysematous lung research models and treatments as a result of the overlooked emphysematous mechanical environment.

11.
Eur J Pharmacol ; 902: 174098, 2021 Jul 05.
Article in English | MEDLINE | ID: mdl-33848541

ABSTRACT

Current cystic fibrosis (CF) treatment strategies are primarily focused on oral/inhaled anti-inflammatories and antibiotics, resulting in a considerable treatment burden for CF patients. Therefore, combination treatments consisting of anti-inflammatories with antibiotics could reduce the CF treatment burden. However, there is an imperative need to understand the potential drug-drug interactions of these combination treatments to determine their efficacy. Thus, this study aimed to determine the interactions of the anti-inflammatory agent Ibuprofen with each of the CF-approved inhaled antibiotics (Tobramycin, Colistin and its prodrug colistimethate sodium/Tadim) and anti-bacterial and anti-inflammatory efficacy. Chemical interactions of the Ibuprofen:antibiotic combinations were elucidated using High-Resolution Mass-Spectrometry (HRMS) and 1H NMR. HRMS showed pairing of Ibuprofen and Tobramycin, further confirmed by 1H NMR whilst no pairing was observed for either Ibuprofen:Colistin or Ibuprofen:Tadim combinations. The anti-bacterial activity of the combinations against Pseudomonas aeruginosa showed that neither paired nor non-paired Ibuprofen:antibiotic therapies altered the anti-bacterial activity. The anti-inflammatory efficacy of the combination therapies was next determined at two different concentrations (Low and High) using in vitro models of NuLi-1 (healthy) and CuFi-1 (CF) cell lines. Differential response in the anti-inflammatory efficacy of Ibuprofen:Tobramycin combination was observed between the two concentrations due to changes in the structural conformation of the paired Ibuprofen:Tobramycin complex at High concentration, confirmed by 1H NMR. In contrast, the non-pairing of the Ibuprofen:Colistin and Ibuprofen:Tadim combinations showed a significant decrease in IL-8 secretion at both the concentrations. Importantly, all antibiotics alone showed anti-inflammatory properties, highlighting the inherent anti-inflammatory properties of these antibiotics.


Subject(s)
Anti-Bacterial Agents/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Colistin/pharmacology , Cystic Fibrosis/drug therapy , Tobramycin/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/toxicity , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/toxicity , Cell Line , Cell Survival/drug effects , Colistin/analogs & derivatives , Colistin/chemistry , Colistin/toxicity , Drug Combinations , Humans , Ibuprofen/chemistry , Ibuprofen/pharmacology , Ibuprofen/toxicity , Inflammation/chemically induced , Inflammation/drug therapy , Interleukin-8/metabolism , Lipopolysaccharides/toxicity , Pseudomonas aeruginosa/drug effects , Tobramycin/chemistry , Tobramycin/toxicity
12.
Int J Pharm ; 597: 120341, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33545289

ABSTRACT

In this paper we demonstrate that the use of multiple orifices can improve the fine particle fraction (FPF) of pressurised metered-dose inhaler solution formulations by up to 75% when compared to a single orifice with an equivalent cross sectional area (p<0.05). While prior work has relied on metal actuator components, improvements in micro injection moulding and micro drilling now make it possible to mass produce novel orifice shapes to achieve similar FPF gains in plastic parts, with orifice diameters less than 0.2 mm. The ability to create internal features inside the actuator is also demonstrated. We show through in vitro high speed imaging that twin orifice sprays merge quickly and act as a single, modified plume. We also show for the first time that FPF and fine particle dose (FPD) are strongly correlated with the distance at which the plume velocity decays to half its initial value (R2=0.997 and 0.95 respectively). When plume velocity & FPF are increased, mouthpiece deposition decreases. This suggests that while smaller orifices produce more fine particles, higher sustained plume velocities also entrain more of the fine particles produced at the periphery of the spray due to increased shear. The effect occurs within the mouthpiece and is thus unlikely to alter the flow field in the upper airway.


Subject(s)
Metered Dose Inhalers , Nebulizers and Vaporizers , Administration, Inhalation , Aerosols , Equipment Design , Particle Size
13.
Int J Pharm ; 596: 120319, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33540036

ABSTRACT

Anti-inflammatory treatment options for cystic fibrosis (CF) patients are currently limited and as such, there is an imperative need to develop new anti-inflammatory agents to reduce the persistent inflammation present within CF lungs. This study explored the potential of Diclofenac (DICLO) as a novel inhaled anti-inflammatory drug for CF treatment. The anti-inflammatory activity of DICLO on an air-liquid interface (ALI) cell culture model of healthy (NuLi-1) and CF (CuFi-1) airways showed a significant reduction in the secretion of pro-inflammatory cytokines, IL-6 and IL-8. Therefore, pressurized metered dose inhaler (pMDI) DICLO formulations were developed to allow targeted DICLO delivery to CF airways. As such, two pMDI DICLO formulations with varying ethanol concentrations: 5% (w/w) equating to 150 µg of DICLO per dose (Low dose), and 15% (w/w) equating to 430 µg of DICLO per dose (High dose) were developed and characterized to determine the optimum formulation. The Low dose pMDI DICLO formulation showed a significantly smaller particle diameter with uniform distribution resulting in a greater aerosol performance when compared to High dose formulation. Consequently, the Low dose pMDI DICLO formulation was further evaluated in terms of in vitro transport characteristics and anti-inflammatory activity. Importantly, the DICLO pMDI displayed anti-inflammatory activity in both healthy and CF in vitro models, highlighting the potential of an aerosolized low-dose DICLO formulation as a promising inhaled anti-inflammatory therapy for CF treatment.


Subject(s)
Cystic Fibrosis , Diclofenac , Administration, Inhalation , Anti-Inflammatory Agents , Bronchodilator Agents , Cystic Fibrosis/drug therapy , Humans , Metered Dose Inhalers , Nebulizers and Vaporizers
14.
Pharm Res ; 38(2): 277-288, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33575958

ABSTRACT

PURPOSE: Computational Fluid Dynamics (CFD) simulations are performed to investigate the impact of adding a grid to a two-inlet dry powder inhaler (DPI). The purpose of the paper is to show the importance of the correct choice of closure model and modeling approach, as well as to perform validation against particle dispersion data obtained from in-vitro studies and flow velocity data obtained from particle image velocimetry (PIV) experiments. METHODS: CFD simulations are performed using the Ansys Fluent 2020R1 software package. Two RANS turbulence models (realisable k - ε and k - ω SST) and the Stress Blended Eddy Simulation (SBES) models are considered. Lagrangian particle tracking for both carrier and fine particles is also performed. RESULTS: Excellent comparison with the PIV data is found for the SBES approach and the particle tracking data are consistent with the dispersion results, given the simplicity of the assumptions made. CONCLUSIONS: This work shows the importance of selecting the correct turbulence modelling approach and boundary conditions to obtain good agreement with PIV data for the flow-field exiting the device. With this validated, the model can be used with much higher confidence to explore the fluid and particle dynamics within the device.


Subject(s)
Administration, Inhalation , Aerosols/chemistry , Dry Powder Inhalers , Equipment Design , Powders/chemistry , Chemistry, Pharmaceutical , Computer Simulation , Hydrodynamics , Models, Chemical , Particle Size , Rheology
15.
Expert Opin Drug Deliv ; 18(8): 1091-1100, 2021 08.
Article in English | MEDLINE | ID: mdl-33504235

ABSTRACT

Introduction: Drug particles inhaled via the respiratory system must first dissolve in the respiratory tract lining fluid (RTLF) that lies on the surfaces of airways and alveoli, so that they are absorbed and have therapeutic action. Artificial simulated RTLFs are often used for in vitro dissolution studies to determine the solubility and dissolution of inhaled drug particles. Such studies can be used to predict bioavailability minimizing the requirement for in vivo studies. Numerous studies have been conducted to develop bio-relevant simulated RTLFs; however, to date, there is no singular simulated RTLF that closely resembles human RTLF.Areas covered: This review focuses on the composition of natural and simulated RTLFs and their use in in vitro dissolution studies.Expert opinion: There is variation in the composition and thickness of RTLF along the respiratory tract. Identification of the actual concentration of components of endogenous RTLF present in different areas of the respiratory tract helps in the development of region-specific simulated RTLFs. It is recommended that region-specific simulated RTLFs can be prepared by varying concentration of major RTLF components like mucus/gel simulants, lipids/surfactants, peptides/proteins, and inorganic/organic salts.


Subject(s)
Lung , Research Design , Humans , Proteins , Solubility
16.
Drug Dev Ind Pharm ; 47(12): 1924-1934, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35473456

ABSTRACT

OBJECTIVE: The airway epithelium is a potential source of pathophysiology through activation of transient potential receptor vallinoid type 1 (TRPV1) channel. A positive feedback cycle caused by TRPV1 activity is hypothesized to induce upregulation and production of inflammatory cytokines, leading to exacerbations of chronic airway diseases. These cytokine and protein regulation effects were investigated in this study. METHODS: Healthy (BEAS-2B) and cancer-derived (Calu-3) airway epithelial cell lines were assessed for changes to TRPV1 protein expression and mRNA expression following exposure to capsaicin (5-50 µM), and TRPV1 modulators including heat (43 °C), and hydrochloric acid (pH 3.4 to pH 6.4). Cytotoxicity was measured to determine the working concentration ranges of treatment. Subsequent bronchoconstriction by TRPV1 activation with capsaicin was measured on guinea pig airway tissue to confirm locally mediated activity without the action of known neuronal inputs. RESULTS: TRPV1 protein expression was not different for all capsaicin, acidity, and heat exposures (p > 0.05), and was replicated in mRNA protein expression (p > 0.05). IL-6 and IL-8 expression were lower in BEAS-2B and Calu-3 cell lines exposed with acidity and heat (p < 0.05), but not consistently with capsaicin exposure, with potential cytotoxic effects possible. CONCLUSIONS: TRPV1 expression was present in airway epithelial cells but its expression was not changed after activation by TRPV1 activators. Thus, it was not apparent the reason for reported TRPV1 upregulation in patients with airway disease states. More complex mechanisms are likely involved and will require further investigation.


Subject(s)
Capsaicin , TRPV Cation Channels , Animals , Capsaicin/pharmacology , Cytokines/metabolism , Feedback , Guinea Pigs , RNA, Messenger , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism , Up-Regulation
17.
Int J Pharm ; 592: 119966, 2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33161040

ABSTRACT

Inhalation drug delivery has seen a swift rise in the use of dry powder inhalers (DPIs) to treat chronic respiratory conditions. However, universal adoption of DPIs has been restrained due to their low efficiencies and significant drug losses in the mouth-throat region. Aerosol efficiency of DPIs is closely related to the fluid-dynamics characteristics of the inhalation flow generated from the devices, which in turn are influenced by the device design. In-vitro and particle image velocimetry (PIV) have been used in this study to assess the aerosol performance of a model carrier formulation delivered by DPI devices and to investigate their flow characteristics. Four DPI device models, with modification to their tangential inlets and addition of a grid, have been explored. Similar aerosol performances were observed for all four device models, with FPF larger than 50%, indicating desirable lung deposition. A high swirling and recirculating jet-flow emerging from the mouthpiece of the DPI models without the grid was observed, which contributed to particle deposition in the throat. DPI models where the grid was present showed a straightened outflow without undesired lateral spreading, that reduced particle deposition in the throat and mass retention in the device. These findings demonstrate that PIV measurements strengthen in-vitro evaluation and can be jointly used to develop high-performance DPIs.


Subject(s)
Dry Powder Inhalers , Administration, Inhalation , Aerosols , Equipment Design , Particle Size , Powders , Rheology
18.
Pharmaceutics ; 13(1)2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33375181

ABSTRACT

Despite the effort to develop efficient targeted drug delivery for lung cancer treatment, the outcome remains unsatisfactory with a survival rate of 15% after 5 years of diagnosis. Inhalation formulation is an ideal alternative that could ensure the direct deposition of chemotherapeutics to the lungs. However, the design of an inhalable formulation that could simultaneously achieve a high local chemotherapeutic dose to the solid tumor and exert low pulmonary toxicities is a challenge, as the presence of 10-30% of chemotherapeutics in the lung is sufficient to induce toxicity. Therefore, this study aimed to develop a simple dry powder inhalation (DPI) formulation containing a model chemotherapeutic agent (paclitaxel, PTX) and a natural antioxidant (curcumin, CUR) that acts to protect healthy lung cells from injury during direct lung delivery. The co-jet-milling of CUR and PTX resulted in formulations with suitable aerosol performance, as indicated in the high fine particle fractions (FPF) (>60%) and adequate mass median aerodynamic diameter (MMAD). The CUR/PTX combination showed a more potent cytotoxic effect against lung cancer cells. This is evident from the induction of apoptosis/necrotic cell death and G2/M cell cycle arrests in both A549 and Calu-3 cells. The increased intracellular ROS, mitochondrial depolarization and reduced ATP content in A549 and Calu-3 cells indicated that the actions of CUR and PTX were associated with mitochondrial oxidative stress. Interestingly, the presence of CUR is crucial to neutralize the cytotoxic effects of PTX against healthy cells (Beas-2B), and this is dose-dependent. This study presents a simple approach to formulating an effective DPI formulation with preferential cytotoxicity towards lung cancer.

19.
Interact Cardiovasc Thorac Surg ; 31(6): 900-903, 2020 12 07.
Article in English | MEDLINE | ID: mdl-33150423

ABSTRACT

Airway stents are used to manage central airway obstructions by restoring airway patency. Current manufactured stents are limited in shape and size, which pose issues in stent fenestrations needed to be manually created to allow collateral ventilation to airway branches. The precise location to place these fenestrations can be difficult to predict based on 2-dimensional computed tomography images. Inspiratory computed tomography scans were obtained from 3 patients and analysed using 3D-Slicer™, Blender™ and AutoDesk® Meshmixer™ programmes to obtain working 3D-airway models, which were 3D printed. Stent customizations were made based on 3D-model dimensions, and fenestrations into the stent were cut. The modified stents were then inserted as per usual technique. Two patients reported improved airway performance; however, stents were later removed due to symptoms related to in-stent sputum retention. In a third patient, the stent was removed a few weeks later due to the persistence of fistula leakage. The use of a 3D-printed personalized airway model allowed for more precise stent customization, optimizing stent fit and allowing for cross-ventilation of branching airways. We determine that an airway model is a beneficial tool for stent optimization but does not prevent the development of some stent-related complications such as airway secretions.


Subject(s)
Airway Obstruction/surgery , Models, Anatomic , Printing, Three-Dimensional , Stents , Aged , Airway Obstruction/diagnosis , Humans , Male , Middle Aged , Tomography, X-Ray Computed
20.
Eur J Pharm Biopharm ; 156: 121-130, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32916267

ABSTRACT

Cystic fibrosis (CF) is a disease that most commonly affects the lungs and is characterized by mucus retention and a continuous cycle of bacterial infection and inflammation. Current CF treatment strategies are focused on targeted drug delivery to the lungs. Novel inhalable drug therapies require an in vitro CF model that appropriately mimics the in vivo CF lung environment to better understand drug delivery and transport across the CF epithelium, and predict drug therapeutic efficacy. Therefore, the aim of this research was to determine the appropriate air-liquid interface (ALI) culture method of the CuFi-1 (CF cell line) compared to the NuLi-1 (healthy cell line) cells to be used as in vitro models of CF airway epithelia. Furthermore, drug transport on both CuFi-1 and NuLi-1 was investigated to determine whether these cell lines could be used to study transport of drugs used in CF treatment using Ibuprofen (the only anti-inflammatory drug currently approved for CF) as a model drug. Differentiating characteristics specific to airway epithelia such as mucus production, inflammatory response and tight junction formation at two seeding densities (Low and High) were assessed throughout an 8-week ALI culture period. This study demonstrated that both the NuLi-1 and CuFi-1 cell lines fully differentiate in ALI culture with significant mucus secretion, IL-6 and IL-8 production, and functional tight junctions at week 8. Additionally, the High seeding density was found to alter the phenotype of the NuLi-1 cell line. For the first time, this study identifies that ibuprofen is transported via the paracellular pathway in ALI models of NuLi-1 and CuFi-1 cell lines. Overall, these findings highlight that NuLi-1 and CuFi-1 as promising in vitro ALI models to investigate the transport properties of novel inhalable drug therapies for CF treatment.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/metabolism , Cystic Fibrosis/metabolism , Ibuprofen/metabolism , Respiratory Mucosa/metabolism , Adolescent , Adult , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Biological Transport/drug effects , Biological Transport/physiology , Cell Line , Cell Line, Transformed , Cystic Fibrosis/drug therapy , Cystic Fibrosis/pathology , Female , Humans , Ibuprofen/administration & dosage , Male , Mucous Membrane/drug effects , Mucous Membrane/metabolism , Mucous Membrane/pathology , Respiratory Mucosa/drug effects , Respiratory Mucosa/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...