Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 51(13): 3748-52, 2003 Jun 18.
Article in English | MEDLINE | ID: mdl-12797738

ABSTRACT

A continuation of an earlier interlaboratory comparison was conducted (1) to assess solid-phase extraction (SPE) using Empore disks to extract atrazine, bromacil, metolachlor, and chlorpyrifos from various water sources accompanied by different sample shipping and quantitative techniques and (2) to compare quantitative results of individual laboratories with results of one common laboratory. Three replicates of a composite surface water (SW) sample were fortified with the analytes along with three replicates of deionized water (DW). A nonfortified DW sample and a nonfortified SW sample were also extracted. All samples were extracted using Empore C(18) disks. After extraction, part of the samples were eluted and analyzed in-house. Duplicate samples were evaporated in a 2-mL vial, shipped dry to a central laboratory (SDC), redissolved, and analyzed. Overall, samples analyzed in-house had higher recoveries than SDC samples. Laboratory x analysis type and laboratory x water source interactions were significant for all four compounds. Seven laboratories participated in this interlaboratory comparison program. No differences in atrazine recoveries were observed from in-house samples analyzed by laboratories A, B, D, and G compared with the recovery of SDC samples. In-house atrazine recoveries from laboratories C and F were higher when compared with recovery from SDC samples. However, laboratory E had lower recoveries from in-house samples compared with SDC samples. For each laboratory, lower recoveries were observed for chlorpyrifos from the SDC samples compared with samples analyzed in-house. Bromacil recovery was <65% at two of the seven laboratories in the study. Bromacil recoveries for the remaining laboratories were >75%. Three laboratories showed no differences in metolachlor recovery; two laboratories had higher recoveries for samples analyzed in-house, and two other laboratories showed higher metolachlor recovery for SDC samples. Laboratory G had a higher recovery in SW for all four compounds compared with DW. Other laboratories that had significant differences in pesticide recovery between the two water sources showed higher recovery in DW than in the SW regardless of the compound. In comparison to earlier work, recovery of these compounds using SPE disks as a temporary storage matrix may be more effective than shipping dried samples in a vial. Problems with analytes such as chlorpyrifos are unavoidable, and it should not be assumed that an extraction procedure using SPE disks will be adequate for all compounds and transferrable across all chromatographic conditions.


Subject(s)
Bromouracil/analogs & derivatives , Laboratories , Pesticides/analysis , Water/analysis , Acetamides/analysis , Atrazine/analysis , Bromouracil/analysis , Chlorpyrifos/analysis , Chromatography, Gas , Filtration/instrumentation , Glass , Quality Control
2.
J AOAC Int ; 85(6): 1324-30, 2002.
Article in English | MEDLINE | ID: mdl-12477195

ABSTRACT

An interlaboratory study was conducted to assess the suitability of C18 solid-phase extraction disks to retain and ship different pesticides from water samples. Surface and deionized water samples were fortified with various pesticides and extracted using C18 disks. Pesticides were eluted from disks and analyzed in-house, or disks were sent to another laboratory where they were eluted and analyzed. Along with the disks, a standard pesticide solution in methanol was also shipped to be used for fortification, extraction, and analysis. The highest recovery from deionized or surface water using shipped disks was obtained for cyanazine (>97%), followed by metalaxyl (>96%), and atrazine (>92%). Although <40% of the bifenthrin, chlorpyrifos, and chlorothalonil fortified in surface water was recovered from shipped disks, recoveries from deionized water were >70%. From in-house eluted disks, bifenthrin and chlorpyrifos were recovered at 118 and 105%, whereas chlorothalonil showed 71% recovery, indicating that poor recovery from surface water was due to loss during shipping rather than low retention by the C18 disks. There was no consistent relationship between recovery from C18 disk and physicochemical properties for the pesticides included in this study. For most of the 13 pesticides tested, there were no differences in recovery between in-house extracted disks and shipped disks, indicating the suitability of disks to concentrate and transport pesticides extracted from water samples.


Subject(s)
Pesticide Residues/analysis , Pesticides/analysis , Water/analysis , Chemical Phenomena , Chemistry, Physical , Reproducibility of Results , Specimen Handling
SELECTION OF CITATIONS
SEARCH DETAIL
...