Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 10(11)2017 Nov 20.
Article in English | MEDLINE | ID: mdl-29156636

ABSTRACT

Bi0.8Pr0.2Fe0.95Mn0.05O3/Bi3.96Gd0.04Ti2.95W0.05O12 (BPFMO/BGTWO) bilayer thin films with Multiferroic/Ferroelectric (MF/FE) structures were deposited onto Pt(111)/Ti/SiO2/Si(100) substrates by using the sol-gel method with rapid thermal annealing. The BPFMO/BGTWO thin films exhibited well-saturated ferromagnetic and ferroelectric hysteresis loops because of the electro-magnetic coupling induced by the MF/FE structure. The remnant magnetization (2Mr) and remnant polarization (2Pr) were 4.6 emu/cm³ and 62 µC/cm², respectively. Moreover, the bipolar I-V switching curves of BPFMO/BGTWO bilayer thin films resistive random access memory (RRAM) devices were discussed, and investigated for LRS/HRS.

2.
Nanoscale Res Lett ; 9(1): 210, 2014.
Article in English | MEDLINE | ID: mdl-24872800

ABSTRACT

Crystalline zinc tin oxide (ZTO; zinc oxide with heavy tin doping of 33 at.%) nanowires were first synthesized using the electrodeposition and heat treatment method based on an anodic aluminum oxide (AAO) membrane, which has an average diameter of about 60 nm. According to the field emission scanning electron microscopy (FE-SEM) results, the synthesized ZTO nanowires are highly ordered and have high wire packing densities. The length of ZTO nanowires is about 4 µm, and the aspect ratio is around 67. ZTO nanowires with a Zn/(Zn + Sn) atomic ratio of 0.67 (approximately 2/3) were observed from an energy dispersive spectrometer (EDS). X-ray diffraction (XRD) and corresponding selected area electron diffraction (SAED) patterns demonstrated that the ZTO nanowire is hexagonal single-crystalline. The study of ultraviolet/visible/near-infrared (UV/Vis/NIR) absorption showed that the ZTO nanowire is a wide-band semiconductor with a band gap energy of 3.7 eV.

3.
Nanoscale Res Lett ; 7(1): 372, 2012 Jul 07.
Article in English | MEDLINE | ID: mdl-22768847

ABSTRACT

One-dimensional pure zinc oxide (ZnO) and Y-doped ZnO nanorod arrays have been successfully fabricated on the silicon substrate for comparison by a simple hydrothermal process at the low temperature of 90°C. The Y-doped nanorods exhibit the same c-axis-oriented wurtzite hexagonal structure as pure ZnO nanorods. Based on the results of photoluminescence, an enhancement of defect-induced green-yellow visible emission is observed for the Y-doped ZnO nanorods. The decrease of E2(H) mode intensity and increase of E1(LO) mode intensity examined by the Raman spectrum also indicate the increase of defects for the Y-doped ZnO nanorods. As compared to pure ZnO nanorods, Y-doped ZnO nanorods show a remarked increase of saturation magnetization. The combination of visible photoluminescence and ferromagnetism measurement results indicates the increase of oxygen defects due to the Y doping which plays a crucial role in the optical and magnetic performances of the ZnO nanorods.

4.
Nanoscale Res Lett ; 7(1): 260, 2012 May 18.
Article in English | MEDLINE | ID: mdl-22607485

ABSTRACT

Aligned ZnO nanowires with different lengths (1 to approximately 4 µm) have been deposited on indium titanium oxide-coated glass substrates by using the solution phase deposition method for application as a work electrode in dye-sensitized solar cells (DSSC). From the results, the increases in length of zinc oxide (ZnO) nanowires can increase adsorption of the N3 dye through ZnO nanowires to improve the short-circuit photocurrent (Jsc) and open-circuit voltage (Voc), respectively. However, the Jsc and Voc values of DSSC with ZnO nanowires length of 4.0 µm (4.8 mA/cm2 and 0.58 V) are smaller than those of DSSC with ZnO nanowires length of 3.0 µm (5.6 mA/cm2 and 0.62 V). It could be due to the increased length of ZnO nanowires also resulted in a decrease in the transmittance of ZnO nanowires thus reducing the incident light intensity on the N3 dye. Optimum power conversion efficiency (η) of 1.49% was obtained in a DSSC with the ZnO nanowires length of 3 µm.

SELECTION OF CITATIONS
SEARCH DETAIL
...