Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Expo Anal Environ Epidemiol ; 15(6): 482-90, 2005 Nov.
Article in English | MEDLINE | ID: mdl-15856074

ABSTRACT

The detection of polycyclic aromatic hydrocarbon (PAH)-DNA adducts in human lymphocytes may be useful as a surrogate end point for individual cancer risk prediction. In this study, we examined the relationship between environmental sources of residential PAH, as well as other potential factors that may confound their association with cancer risk, and the detection of PAH-DNA adducts in a large population-based sample of adult women. Adult female residents of Long Island, New York, aged at least 20 years were identified from the general population between August 1996 and July 1997. Among 1556 women who completed a structured questionnaire, 941 donated sufficient blood (25+ ml) to allow use of a competitive ELISA for measurement of PAH-DNA adducts in peripheral blood mononuclear cells. Ambient PAH exposure at the current residence was estimated using geographic modeling (n=796). Environmental home samples of dust (n=356) and soil (n=360) were collected on a random subset of long-term residents (15+ years). Multivariable regression was conducted to obtain the best-fitting predictive models. Three separate models were constructed based on data from : (A) the questionnaire, including a dietary history; (B) environmental home samples; and (C) geographic modeling. Women who donated blood in summer and fall had increased odds of detectable PAH-DNA adducts (OR=2.65, 95% confidence interval (CI)=1.69, 4.17; OR=1.59, 95% CI=1.08, 2.32, respectively), as did current and past smokers (OR=1.50, 95% CI=1.00, 2.24; OR=1.46, 95% CI=1.05, 2.02, respectively). There were inconsistent associations between detectable PAH-DNA adducts and other known sources of residential PAH, such as grilled and smoked foods, or a summary measure of total dietary benzo-[a]-pyrene (BaP) intake during the year prior to the interview. Detectable PAH-DNA adducts were inversely associated with increased BaP levels in dust in the home, but positively associated with BaP levels in soil outside of the home, although CIs were wide. Ambient BaP estimates from the geographic model were not associated with detectable PAH-DNA adducts. These data suggest that PAH-DNA adducts detected in a population-based sample of adult women with ambient exposure levels reflect some key residential PAH exposure sources assessed in this study, such as cigarette smoking.


Subject(s)
DNA Adducts/blood , Environmental Exposure , Monocytes/chemistry , Polycyclic Aromatic Hydrocarbons/blood , Population Surveillance , Residence Characteristics , Adult , Aged , Aged, 80 and over , Confounding Factors, Epidemiologic , Female , Humans , Middle Aged , New York , Surveys and Questionnaires
2.
Biomarkers ; 8(2): 142-55, 2003.
Article in English | MEDLINE | ID: mdl-12775499

ABSTRACT

Differences in lung cancer risk by race/ethnicity have been observed among smokers. To determine whether these observations might reflect differences in the formation of carcinogen-DNA adducts, we analysed blood specimens (n=151) collected from smokers who were recruited for possible participation in an antioxidant vitamin intervention study. Mononuclear cells were analysed for polycyclic aromatic hydrocarbon (PAH)-DNA adducts by competitive enzyme-linked immunosorbent assay. Genotypes of glutathione S-transferase M1 and P1 (GSTM1 and GSTP1), enzymes involved in the detoxification of PAH metabolites, were determined by polymerase chain reaction (PCR) and PCR-restriction fragment length polymorphism, respectively. GSTM1 was present in 65 out of 88 (73.4%), 16 out of 32 (50.0%) and 16 out of 29 (54.8%) of African-Americans, Caucasians and Latinos, respectively (p=0.022). Homozygosity for the GSTP1 codon 105 variant was found in 25.6%, 6.3% and 10.0% of African-Americans, Caucasians and Latinos, respectively (p=0.023). Regression analysis of the log-transformed adduct levels confirmed that Caucasian and Latino subjects had lower PAH-DNA adduct levels than African-American subjects, after adjustment for gender, education, alpha-tocopherol and beta-carotene levels, and GSTM1 status. Further adjustment for age and current smoking habits had no impact on these findings. Although crude analysis suggested that the GSTM1-positive genotype may be associated with lower PAH-DNA levels in Caucasians (but not in African-Americans or Latinos), a formal test for interaction between GSTM1 and ethnicity was not significant. We found no association between adduct levels and GSTP1 genotype. Although the mechanism is unclear, ethnic differences in DNA damage levels may in part explain why African-Americans have higher lung cancer incidence rates than other ethnic groups.


Subject(s)
DNA Adducts/metabolism , Glutathione Transferase/genetics , Polycyclic Aromatic Hydrocarbons/metabolism , Polymorphism, Genetic/genetics , Smoking/metabolism , Adult , Black or African American , Antioxidants/metabolism , Ascorbic Acid/blood , Cotinine/blood , Cross-Sectional Studies , DNA Adducts/analysis , DNA Adducts/genetics , Ethnicity , Female , Glutathione S-Transferase pi , Hispanic or Latino , Humans , Isoenzymes/genetics , Male , Middle Aged , Polycyclic Aromatic Hydrocarbons/analysis , Surveys and Questionnaires , Vitamin E/blood , White People , beta Carotene/blood
3.
Cancer Epidemiol Biomarkers Prev ; 11(8): 677-85, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12163319

ABSTRACT

Polycyclic aromatic hydrocarbons (PAH) are potent mammary carcinogens in rodents, but their effect on breast cancer development in women is not clear. To examine whether currently measurable PAH damage to DNA increases breast cancer risk, a population-based case-control study was undertaken on Long Island, NY. Cases were women newly diagnosed with in situ and invasive breast cancer; controls were randomly selected women frequency matched to the age distribution of cases. Blood samples were donated by 1102 (73.0%) and 1141 (73.3%) of case and control respondents, respectively. Samples from 576 cases and 427 controls were assayed for PAH-DNA adducts using an ELISA. The geometric mean (and geometric SD) of the log-transformed levels of PAH-DNA adducts on a natural scale was slightly, but nonsignificantly, higher among cases [7.36 (7.29)] than among controls [6.21 (4.17); P = 0.51]. The age-adjusted odds ratio (OR) for breast cancer in relation to the highest quintile of adduct levels compared with the lowest was 1.51 [95% confidence interval (CI), 1.04-2.20], with little or no evidence of substantial confounding (corresponding multivariate-adjusted OR, 1.49; 95% CI, 1.00-2.21). There was no consistent elevation in risk with increasing adduct levels, nor was there a consistent association between adduct levels and two of the main sources of PAH, active or passive cigarette smoking or consumption of grilled and smoked foods. These data indicate that PAH-DNA adduct formation may influence breast cancer development, although the association does not appear to be dose dependent and may have a threshold effect.


Subject(s)
Breast Neoplasms/etiology , Breast Neoplasms/genetics , DNA Adducts/drug effects , DNA Damage/drug effects , Environmental Exposure , Polycyclic Aromatic Hydrocarbons/adverse effects , Adult , Aged , Case-Control Studies , Diet , Enzyme-Linked Immunosorbent Assay , Female , Humans , Middle Aged , New York City/epidemiology , Odds Ratio , Risk Factors , Smoking/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...