Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Big Data ; 4: 672460, 2021.
Article in English | MEDLINE | ID: mdl-34212134

ABSTRACT

RTS,S/AS01 (GSK) is the world's first malaria vaccine. However, despite initial efficacy of almost 70% over the first 6 months of follow-up, efficacy waned over time. A deeper understanding of the immune features that contribute to RTS,S/AS01-mediated protection could be beneficial for further vaccine development. In two recent controlled human malaria infection (CHMI) trials of the RTS,S/AS01 vaccine in malaria-naïve adults, MAL068 and MAL071, vaccine efficacy against patent parasitemia ranged from 44% to 87% across studies and arms (each study included a standard RTS,S/AS01 arm with three vaccine doses delivered in four-week-intervals, as well as an alternative arm with a modified version of this regimen). In each trial, RTS,S/AS01 immunogenicity was interrogated using a broad range of immunological assays, assessing cellular and humoral immune parameters as well as gene expression. Here, we used a predictive modeling framework to identify immune biomarkers measured at day-of-challenge that could predict sterile protection against malaria infection. Using cross-validation on MAL068 data (either the standard RTS,S/AS01 arm alone, or across both the standard RTS,S/AS01 arm and the alternative arm), top-performing univariate models identified variables related to Fc effector functions and titer of antibodies that bind to the central repeat region (NANP6) of CSP as the most predictive variables; all NANP6-related variables consistently associated with protection. In cross-study prediction analyses of MAL071 outcomes (the standard RTS,S/AS01 arm), top-performing univariate models again identified variables related to Fc effector functions of NANP6-targeting antibodies as highly predictive. We found little benefit-with this dataset-in terms of improved prediction accuracy in bivariate models vs. univariate models. These findings await validation in children living in malaria-endemic regions, and in vaccinees administered a fourth RTS,S/AS01 dose. Our findings support a "quality as well as quantity" hypothesis for RTS,S/AS01-elicited antibodies against NANP6, implying that malaria vaccine clinical trials should assess both titer and Fc effector functions of anti-NANP6 antibodies.

2.
JCI Insight ; 4(23)2019 12 05.
Article in English | MEDLINE | ID: mdl-31671072

ABSTRACT

At diagnosis, most people with type 1 diabetes (T1D) produce measurable levels of endogenous insulin, but the rate at which insulin secretion declines is heterogeneous. To explain this heterogeneity, we sought to identify a composite signature predictive of insulin secretion, using a collaborative assay evaluation and analysis pipeline that incorporated multiple cellular and serum measures reflecting ß cell health and immune system activity. The ability to predict decline in insulin secretion would be useful for patient stratification for clinical trial enrollment or therapeutic selection. Analytes from 12 qualified assays were measured in shared samples from subjects newly diagnosed with T1D. We developed a computational tool (DIFAcTO, Data Integration Flexible to Account for different Types of data and Outcomes) to identify a composite panel associated with decline in insulin secretion over 2 years following diagnosis. DIFAcTO uses multiple filtering steps to reduce data dimensionality, incorporates error estimation techniques including cross-validation and sensitivity analysis, and is flexible to assay type, clinical outcome, and disease setting. Using this novel analytical tool, we identified a panel of immune markers that, in combination, are highly associated with loss of insulin secretion. The methods used here represent a potentially novel process for identifying combined immune signatures that predict outcomes relevant for complex and heterogeneous diseases like T1D.


Subject(s)
Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/immunology , Disease Progression , Insulin Secretion/physiology , Adolescent , Adult , Child , Computational Biology , Female , Humans , Hypoglycemic Agents/pharmacology , Immunotherapy/methods , Insulin-Secreting Cells/metabolism , Male , Young Adult
3.
J Clin Invest ; 129(11): 4838-4849, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31589165

ABSTRACT

HVTN 505 is a preventative vaccine efficacy trial testing DNA followed by recombinant adenovirus serotype 5 (rAd5) in circumcised, Ad5-seronegative men and transgendered persons who have sex with men in the United States. Identified immune correlates of lower HIV-1 risk and a virus sieve analysis revealed that, despite lacking overall efficacy, vaccine-elicited responses exerted pressure on infecting HIV-1 viruses. To interrogate the mechanism of the antibody correlate of HIV-1 risk, we examined antigen-specific antibody recruitment of Fcγ receptors (FcγRs), antibody-dependent cellular phagocytosis (ADCP), and the role of anti-envelope (anti-Env) IgG3. In a prespecified immune correlates analysis, antibody-dependent monocyte phagocytosis and antibody binding to FcγRIIa correlated with decreased HIV-1 risk. Follow-up analyses revealed that anti-Env IgG3 breadth correlated with reduced HIV-1 risk, anti-Env IgA negatively modified infection risk by Fc effector functions, and that vaccine recipients with a specific FcγRIIa single-nucleotide polymorphism locus had a stronger correlation with decreased HIV-1 risk when ADCP, Env-FcγRIIa, and IgG3 binding were high. Additionally, FcγRIIa engagement correlated with decreased viral load setpoint in vaccine recipients who acquired HIV-1. These data support a role for vaccine-elicited anti-HIV-1 Env IgG3, antibody engagement of FcRs, and phagocytosis as potential mechanisms for HIV-1 prevention.


Subject(s)
AIDS Vaccines/immunology , HIV Antibodies/immunology , HIV Infections/immunology , HIV-1/immunology , Immunoglobulin G/immunology , Receptors, IgG/immunology , AIDS Vaccines/administration & dosage , HIV Infections/genetics , HIV Infections/prevention & control , Humans , Male , Polymorphism, Single Nucleotide , Receptors, IgG/genetics , Risk Factors , env Gene Products, Human Immunodeficiency Virus/immunology
4.
J Comput Biol ; 26(10): 1113-1129, 2019 10.
Article in English | MEDLINE | ID: mdl-31009236

ABSTRACT

The inference of gene networks from large-scale human genomic data is challenging due to the difficulty in identifying correct regulators for each gene in a high-dimensional search space. We present a Bayesian approach integrating external data sources with knockdown data from human cell lines to infer gene regulatory networks. In particular, we assemble multiple data sources, including gene expression data, genome-wide binding data, gene ontology, and known pathways, and use a supervised learning framework to compute prior probabilities of regulatory relationships. We show that our integrated method improves the accuracy of inferred gene networks as well as extends some previous Bayesian frameworks both in theory and applications. We apply our method to two different human cell lines, namely skin melanoma cell line A375 and lung cancer cell line A549, to illustrate the capabilities of our method. Our results show that the improvement in performance could vary from cell line to cell line and that we might need to choose different external data sources serving as prior knowledge if we hope to obtain better accuracy for different cell lines.


Subject(s)
Gene Regulatory Networks , Genomics/methods , A549 Cells , Bayes Theorem , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Gene Ontology , Humans , Lung Neoplasms/genetics , Melanoma/genetics , Skin Neoplasms/genetics , Supervised Machine Learning , Transcriptome
5.
Stat Modelling ; 19(4): 444-465, 2019 Aug.
Article in English | MEDLINE | ID: mdl-33824624

ABSTRACT

Gene regulatory network reconstruction is an essential task of genomics in order to further our understanding of how genes interact dynamically with each other. The most readily available data, however, are from steady state observations. These data are not as informative about the relational dynamics between genes as knockout or over-expression experiments, which attempt to control the expression of individual genes. We develop a new framework for network inference using samples from the equilibrium distribution of a vector autoregressive (VAR) time-series model which can be applied to steady state gene expression data. We explore the theoretical aspects of our method and apply the method to synthetic gene expression data generated using GeneNetWeaver.

6.
Gigascience ; 6(10): 1-10, 2017 10 01.
Article in English | MEDLINE | ID: mdl-29020744

ABSTRACT

Inferring genetic networks from genome-wide expression data is extremely demanding computationally. We have developed fastBMA, a distributed, parallel, and scalable implementation of Bayesian model averaging (BMA) for this purpose. fastBMA also includes a computationally efficient module for eliminating redundant indirect edges in the network by mapping the transitive reduction to an easily solved shortest-path problem. We evaluated the performance of fastBMA on synthetic data and experimental genome-wide time series yeast and human datasets. When using a single CPU core, fastBMA is up to 100 times faster than the next fastest method, LASSO, with increased accuracy. It is a memory-efficient, parallel, and distributed application that scales to human genome-wide expression data. A 10 000-gene regulation network can be obtained in a matter of hours using a 32-core cloud cluster (2 nodes of 16 cores). fastBMA is a significant improvement over its predecessor ScanBMA. It is more accurate and orders of magnitude faster than other fast network inference methods such as the 1 based on LASSO. The improved scalability allows it to calculate networks from genome scale data in a reasonable time frame. The transitive reduction method can improve accuracy in denser networks. fastBMA is available as code (M.I.T. license) from GitHub (https://github.com/lhhunghimself/fastBMA), as part of the updated networkBMA Bioconductor package (https://www.bioconductor.org/packages/release/bioc/html/networkBMA.html) and as ready-to-deploy Docker images (https://hub.docker.com/r/biodepot/fastbma/).


Subject(s)
Algorithms , Gene Regulatory Networks , Genome, Fungal , Genome, Human , Bayes Theorem , Gene Expression , Humans , Models, Statistical , Saccharomyces cerevisiae
7.
Math Biosci Eng ; 13(6): 1241-1251, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27775378

ABSTRACT

Inferring gene regulatory networks is an important problem in systems biology. However, these networks can be hard to infer from experimental data because of the inherent variability in biological data as well as the large number of genes involved. We propose a fast, simple method for inferring regulatory relationships between genes from knockdown experiments in the NIH LINCS dataset by calculating posterior probabilities, incorporating prior information. We show that the method is able to find previously identified edges from TRANSFAC and JASPAR and discuss the merits and limitations of this approach.


Subject(s)
Gene Regulatory Networks , Models, Biological , Systems Biology/methods , Algorithms , Probability
8.
Ann Appl Stat ; 11(4): 1998-2026, 2016 Feb.
Article in English | MEDLINE | ID: mdl-30740193

ABSTRACT

The NIH Library of Integrated Network-based Cellular Signatures (LINCS) contains gene expression data from over a million experiments, using Luminex Bead technology. Only 500 colors are used to measure the expression levels of the 1,000 landmark genes measured, and the data for the resulting pairs of genes are deconvolved. The raw data are sometimes inadequate for reliable deconvolution, leading to artifacts in the final processed data. These include the expression levels of paired genes being flipped or given the same value, and clusters of values that are not at the true expression level. We propose a new method called model-based clustering with data correction (MCDC) that is able to identify and correct these three kinds of artifacts simultaneously. We show that MCDC improves the resulting gene expression data in terms of agreement with external baselines, as well as improving results from subsequent analysis.

9.
BMC Syst Biol ; 8: 47, 2014 Apr 17.
Article in English | MEDLINE | ID: mdl-24742092

ABSTRACT

BACKGROUND: Genome-wide time-series data provide a rich set of information for discovering gene regulatory relationships. As genome-wide data for mammalian systems are being generated, it is critical to develop network inference methods that can handle tens of thousands of genes efficiently, provide a systematic framework for the integration of multiple data sources, and yield robust, accurate and compact gene-to-gene relationships. RESULTS: We developed and applied ScanBMA, a Bayesian inference method that incorporates external information to improve the accuracy of the inferred network. In particular, we developed a new strategy to efficiently search the model space, applied data transformations to reduce the effect of spurious relationships, and adopted the g-prior to guide the search for candidate regulators. Our method is highly computationally efficient, thus addressing the scalability issue with network inference. The method is implemented as the ScanBMA function in the networkBMA Bioconductor software package. CONCLUSIONS: We compared ScanBMA to other popular methods using time series yeast data as well as time-series simulated data from the DREAM competition. We found that ScanBMA produced more compact networks with a greater proportion of true positives than the competing methods. Specifically, ScanBMA generally produced more favorable areas under the Receiver-Operating Characteristic and Precision-Recall curves than other regression-based methods and mutual-information based methods. In addition, ScanBMA is competitive with other network inference methods in terms of running time.


Subject(s)
Gene Regulatory Networks , Genomics/methods , Algorithms , Bayes Theorem , Saccharomyces cerevisiae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...