Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Cell Biosci ; 11(1): 194, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34758885

ABSTRACT

BACKGROUND: Methamphetamine (METH), a potent addictive psychostimulant, is highly prevalent in HIV-infected individuals. Clinically, METH use is implicated in alteration of immune system and increase of HIV spread/replication. Therefore, it is of importance to examine whether METH has direct effect on HIV infection of monocytes, the major target and reservoir cells for the virus. RESULTS: METH-treated monocytes were more susceptible to HIV infection as evidenced by increased levels of viral proteins (p24 and Pr55Gag) and expression of viral GAG gene. In addition, using HIV Bal with luciferase reporter gene (HIV Bal-eLuc), we showed that METH-treated cells expressed higher luciferase activities than untreated monocytes. Mechanistically, METH inhibited the expression of IFN-λ1, IRF7, STAT1, and the antiviral IFN-stimulated genes (ISGs: OAS2, GBP5, ISG56, Viperin and ISG15). In addition, METH down-regulated the expression of the HIV restriction microRNAs (miR-28, miR-29a, miR-125b, miR-146a, miR-155, miR-223, and miR-382). CONCLUSIONS: METH compromises the intracellular anti-HIV immunity and facilitates HIV replication in primary human monocytes.

2.
Nat Commun ; 10(1): 2753, 2019 07 02.
Article in English | MEDLINE | ID: mdl-31266936

ABSTRACT

Elimination of HIV-1 requires clearance and removal of integrated proviral DNA from infected cells and tissues. Here, sequential long-acting slow-effective release antiviral therapy (LASER ART) and CRISPR-Cas9 demonstrate viral clearance in latent infectious reservoirs in HIV-1 infected humanized mice. HIV-1 subgenomic DNA fragments, spanning the long terminal repeats and the Gag gene, are excised in vivo, resulting in elimination of integrated proviral DNA; virus is not detected in blood, lymphoid tissue, bone marrow and brain by nested and digital-droplet PCR as well as RNAscope tests. No CRISPR-Cas9 mediated off-target effects are detected. Adoptive transfer of human immunocytes from dual treated, virus-free animals to uninfected humanized mice fails to produce infectious progeny virus. In contrast, HIV-1 is readily detected following sole LASER ART or CRISPR-Cas9 treatment. These data provide proof-of-concept that permanent viral elimination is possible.


Subject(s)
Anti-HIV Agents/administration & dosage , CRISPR-Cas Systems , HIV Infections/therapy , HIV-1/genetics , Adoptive Transfer , Animals , Combined Modality Therapy , DNA, Viral/genetics , DNA, Viral/immunology , Gene Editing , HIV Infections/drug therapy , HIV Infections/immunology , HIV Infections/virology , HIV-1/immunology , HIV-1/physiology , Humans , Mice , Treatment Outcome , Virus Latency
3.
Mol Ther Nucleic Acids ; 12: 275-282, 2018 Sep 07.
Article in English | MEDLINE | ID: mdl-30195766

ABSTRACT

We used NOD/SCID mice, also known as NRG, to assess the ability of lentivirus-mediated intravenous delivery of CRISPR in editing the HIV-1 genome from the circulating PBMC engrafts, some of which homed within several animal solid tissues. Lentivirus-mediated delivery of a multiplex of guide RNAs accompanied by Cas9 endonuclease led to the excision of the targeted region of the viral genome positioned within the HIV-1 LTR from the in-vitro-infected human peripheral blood mononuclear cells (PBMCs) embedded in the spleens of NRG mice. Similarly, the treatment of NRG mice harboring PBMC engrafts derived from HIV-1-positive patients with the therapeutic lentivirus eliminated the presence of the viral DNA fragment in the blood, as well as in the spleen, lung, and liver, of the engrafted animals. Sanger sequence analysis of the viral DNA after treatment with the lentiviral vectors expressing Cas9 and gRNAs verified the editing and removal of the proviral DNA fragment from the viral genome at the predicted sites. This proof-of-concept study, for the first time, demonstrates successful excision of the HIV-1 proviral DNA from patient immune cell engrafts in humanized mice upon treatment with lentivirus-expressing CRISPR and causes a decline in the level of replication-competent virus.

4.
J Cell Biochem ; 118(11): 3586-3594, 2017 11.
Article in English | MEDLINE | ID: mdl-28460414

ABSTRACT

The CRISPR or clustered regularly interspaced short palindromic repeats system is currently the most advanced approach to genome editing and is notable for providing an unprecedented degree of specificity, effectiveness, and versatility in genetic manipulation. CRISPR evolved as a prokaryotic immune system to provide an acquired immunity and resistance to foreign genetic elements such as bacteriophages. It has recently been developed into a tool for the specific targeting of nucleotide sequences within complex eukaryotic genomes for the purpose of genetic manipulation. The power of CRISPR lies in its simplicity and ease of use, its flexibility to be targeted to any given nucleotide sequence by the choice of an easily synthesized guide RNA, and its ready ability to continue to undergo technical improvements. Applications for CRISPR are numerous including creation of novel transgenic cell animals for research, high-throughput screening of gene function, potential clinical gene therapy, and nongene-editing approaches such as modulating gene activity and fluorescent tagging. In this prospect article, we will describe the salient features of the CRISPR system with an emphasis on important drawbacks and considerations with respect to eliminating off-target events and obtaining efficient CRISPR delivery. We will discuss recent technical developments to the system and we will illustrate some of the most recent applications with an emphasis on approaches to eliminate human viruses including HIV-1, JCV and HSV-1 and prospects for the future. J. Cell. Biochem. 118: 3586-3594, 2017. © 2017 Wiley Periodicals, Inc.


Subject(s)
Biomedical Research/methods , Clustered Regularly Interspaced Short Palindromic Repeats , Gene Editing/methods , Animals , Biomedical Research/trends , Gene Editing/trends , Humans
5.
Mol Ther ; 25(5): 1168-1186, 2017 05 03.
Article in English | MEDLINE | ID: mdl-28366764

ABSTRACT

CRISPR-associated protein 9 (Cas9)-mediated genome editing provides a promising cure for HIV-1/AIDS; however, gene delivery efficiency in vivo remains an obstacle to overcome. Here, we demonstrate the feasibility and efficiency of excising the HIV-1 provirus in three different animal models using an all-in-one adeno-associated virus (AAV) vector to deliver multiplex single-guide RNAs (sgRNAs) plus Staphylococcus aureus Cas9 (saCas9). The quadruplex sgRNAs/saCas9 vector outperformed the duplex vector in excising the integrated HIV-1 genome in cultured neural stem/progenitor cells from HIV-1 Tg26 transgenic mice. Intravenously injected quadruplex sgRNAs/saCas9 AAV-DJ/8 excised HIV-1 proviral DNA and significantly reduced viral RNA expression in several organs/tissues of Tg26 mice. In EcoHIV acutely infected mice, intravenously injected quadruplex sgRNAs/saCas9 AAV-DJ/8 reduced systemic EcoHIV infection, as determined by live bioluminescence imaging. Additionally, this quadruplex vector induced efficient proviral excision, as determined by PCR genotyping in the liver, lungs, brain, and spleen. Finally, in humanized bone marrow/liver/thymus (BLT) mice with chronic HIV-1 infection, successful proviral excision was detected by PCR genotyping in the spleen, lungs, heart, colon, and brain after a single intravenous injection of quadruplex sgRNAs/saCas9 AAV-DJ/8. In conclusion, in vivo excision of HIV-1 proviral DNA by sgRNAs/saCas9 in solid tissues/organs can be achieved via AAV delivery, a significant step toward human clinical trials.


Subject(s)
Endonucleases/genetics , Genetic Therapy/methods , Genome, Viral , HIV Infections/therapy , HIV-1/genetics , Proviruses/genetics , RNA, Guide, Kinetoplastida/genetics , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Base Sequence , CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , Dependovirus/genetics , Dependovirus/metabolism , Disease Models, Animal , Endonucleases/metabolism , Gene Editing/methods , Genetic Vectors/chemistry , Genetic Vectors/metabolism , HIV Infections/pathology , HIV Infections/virology , HIV Long Terminal Repeat , HIV-1/metabolism , Humans , Mice , Mice, Transgenic , Oligonucleotides/genetics , Oligonucleotides/metabolism , Proviruses/metabolism , RNA, Guide, Kinetoplastida/metabolism , Staphylococcus aureus/chemistry , Staphylococcus aureus/enzymology , gag Gene Products, Human Immunodeficiency Virus/genetics , gag Gene Products, Human Immunodeficiency Virus/metabolism , pol Gene Products, Human Immunodeficiency Virus/genetics , pol Gene Products, Human Immunodeficiency Virus/metabolism
6.
Mol Ther Nucleic Acids ; 6: 233-242, 2017 Mar 17.
Article in English | MEDLINE | ID: mdl-28325289

ABSTRACT

HIV-1 inserts its proviral DNA into the infected host cells, by which HIV proviral DNA can then be duplicated along with each cell division. Thus, provirus cannot be eradicated completely by current antiretroviral therapy. We have developed an innovative strategy to silence the HIV provirus by targeted DNA methylation on the HIV promoter region. We genetically engineered a chimeric DNA methyltransferase 1 composed of designed zinc-finger proteins to become ZF2 DNMT1. After transient transfection of the molecular clone encoding this chimeric protein into HIV-1 infected or latently infected cells, efficient suppression of HIV-1 expression by the methylation of CpG islands in 5'-LTR was observed and quantified. The effective suppression of HIV in latently infected cells by ZF2-DNMT1 is stable and can last through about 40 cell passages. Cytotoxic caused by ZF2-DNMT1 was only observed during cellular proliferation. Taken together, our results demonstrate the potential of this novel approach for anti-HIV-1 therapy.

7.
Sci Rep ; 6: 31527, 2016 08 16.
Article in English | MEDLINE | ID: mdl-27528385

ABSTRACT

The CRISPR/Cas9 gene editing method is comprised of the guide RNA (gRNA) to target a specific DNA sequence for cleavage and the Cas9 endonuclease for introducing breaks in the double-stranded DNA identified by the gRNA. Co-expression of both a multiplex of HIV-1-specific gRNAs and Cas9 in cells results in the modification and/or excision of the segment of viral DNA, leading to replication-defective virus. In this study, we have personalized the activity of CRISPR/Cas9 by placing the gene encoding Cas9 under the control of a minimal promoter of HIV-1 that is activated by the HIV-1 Tat protein. We demonstrate that functional activation of CRISPR/Cas9 by Tat during the course of viral infection excises the designated segment of the integrated viral DNA and consequently suppresses viral expression. This strategy was also used in a latently infected CD4+ T-cell model after treatment with a variety of HIV-1 stimulating agents including PMA and TSA. Controlled expression of Cas9 by Tat offers a new strategy for safe implementation of the Cas9 technology for ablation of HIV-1 at a very early stage of HIV-1 replication during the course of the acute phase of infection and the reactivation of silent proviral DNA in latently infected cells.


Subject(s)
Gene Editing , Gene Expression Regulation, Viral , HIV-1/genetics , 3' Untranslated Regions , 5' Untranslated Regions , Base Sequence , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , Clustered Regularly Interspaced Short Palindromic Repeats , Genes, Viral , HIV Long Terminal Repeat , HIV-1/physiology , Humans , Jurkat Cells , Promoter Regions, Genetic , Sequence Homology, Nucleic Acid , Virus Replication
8.
AIDS ; 30(8): 1163-74, 2016 05 15.
Article in English | MEDLINE | ID: mdl-26990633

ABSTRACT

OBJECTIVE: There is an urgent need for the development of HIV-1 genome eradication strategies that lead to a permanent cure for HIV-1/AIDS. We previously reported that four guide RNAs (gRNAs) targeting HIV-1 long terminal repeats (LTR) effectively eradicated the entire HIV-1 genome. In this study, we sought to identify the best gRNAs targeting HIV-1 LTR and viral structural region and optimize gRNA pairing that can efficiently eradicate the HIV-1 genome. DESIGN: Highly specific gRNAs were designed using bioinformatics tools, and their capacity of guiding CRISPR-associated system 9 to cleave HIV-1 proviral DNA was evaluated using high-throughput HIV-1 luciferase reporter assay and rapid Direct-PCR genotyping. METHODS: The target seed sequences for each gRNA were cloned into lentiviral vectors. HEK293T cells were cotransfected with a pEcoHIV-NL4-3-firefly-luciferase reporter vector (1 : 20) over lentiviral vectors carrying CRISPR-associated system 9 and single gRNA or various combinations of gRNAs. The EcoHIV DNA cleaving efficiency was evaluated by Direct-PCR genotyping, and the EcoHIV transcription/replication activity was examined by a luciferase reporter assay. RESULTS: Most of the designed gRNAs are effective to eliminate the predicted HIV-1 genome sequence between the selected two target sites. This is evidenced by the presence of PCR genotypic deletion/insertion and the decrease of luciferase reporter activity. In particular, a combination of viral structural gRNAs with LTR gRNAs provided a higher efficiency of genome eradication and an easier approach for PCR genotyping. CONCLUSION: Our screening strategy can specifically and effectively identify gRNAs targeting HIV-1 LTR and structural region to excise proviral HIV-1 from the host genome.


Subject(s)
Acquired Immunodeficiency Syndrome/virology , Anti-HIV Agents/metabolism , Biological Products/metabolism , Gene Expression Regulation, Viral , Genetic Testing , HIV-1/drug effects , RNA, Guide, Kinetoplastida/metabolism , Acquired Immunodeficiency Syndrome/therapy , Computational Biology , Genes, Reporter , Genome, Viral , Genotyping Techniques , HEK293 Cells , HIV-1/genetics , Humans , Luciferases/analysis , Luciferases/genetics , Polymerase Chain Reaction , Proviruses/drug effects , Proviruses/genetics , RNA, Guide, Kinetoplastida/genetics , Recombination, Genetic , Virus Latency/drug effects
9.
Sci Rep ; 5: 16277, 2015 Nov 05.
Article in English | MEDLINE | ID: mdl-26538064

ABSTRACT

Current antiretroviral therapy does not eliminate the integrated and transcriptionally silent HIV-1 provirus in latently infected cells. Recently, a "shock and kill" strategy has been extensively explored to eradicate the HIV-1 latent reservoirs for a permanent cure of AIDS. The therapeutic efficacy of currently used agents remains disappointing because of low efficiency, non-specificity and cellular toxicity. Here we present a novel catalytically-deficient Cas9-synergistic activation mediator (dCas9-SAM) technology to selectively, potently and persistently reactivate the HIV-1 latent reservoirs. By screening 16 MS2-mediated single guide RNAs, we identified long terminal repeat (LTR)-L and O that surround the enhancer region (-165/-145 for L and -92/-112 for O) and induce robust reactivation of HIV-1 provirus in HIV-1 latent TZM-bI epithelial, Jurkat T lymphocytic and CHME5 microglial cells. This compulsory reactivation induced cellular suicide via toxic buildup of viral proteins within HIV-1 latent Jurkat T and CHME5 microglial cells. These results suggest that this highly effective and target-specific dCas9-SAM system can serve as a novel HIV-latency-reversing therapeutic tool for the permanent elimination of HIV-1 latent reservoirs.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats/genetics , HIV Infections/virology , HIV-1/genetics , RNA, Guide, Kinetoplastida/genetics , Virus Activation/genetics , Virus Latency/genetics , Cell Line, Tumor , HIV Long Terminal Repeat/genetics , Humans , Jurkat Cells , Proviruses/genetics , T-Lymphocytes/virology
10.
J Gen Virol ; 96(10): 3131-3142, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26297664

ABSTRACT

In vivo imaging can provide real-time information and three-dimensional (3D) non-invasive images of deep tissues and organs, including the brain, whilst allowing longitudinal observation of the same animals, thus eliminating potential variation between subjects. Current in vivo imaging technologies, such as magnetic resonance imaging (MRI), positron emission tomography-computed tomography (PET-CT) and bioluminescence imaging (BLI), can be used to pinpoint the spatial location of target cells, which is urgently needed for revealing human immunodeficiency virus (HIV) dissemination in real-time and HIV-1 reservoirs during suppressive antiretroviral therapy (ART). To demonstrate that in vivo imaging can be used to visualize and quantify simian immunodeficiency virus (SIV)-transduced cells, we genetically engineered SIV to carry different imaging reporters. Based on the expression of the reporter genes, we could visualize and quantify the SIV-transduced cells via vesicular stomatitis virus glycoprotein pseudotyping in a mouse model using BLI, PET-CT or MRI. We also engineered a chimeric EcoSIV for in vivo infection study. Our results demonstrated that BLI is sensitive enough to detect as few as five single cells transduced with virus, whilst PET-CT can provide 3D images of the spatial location of as few as 10 000 SIV-infected cells. We also demonstrated that MRI can provide images with high spatial resolution in a 3D anatomical context to distinguish a small population of SIV-transduced cells. The in vivo imaging platform described here can potentially serve as a powerful tool to visualize lentiviral infection, including when and where viraemia rebounds, and how reservoirs are formed and maintained during latency or suppressive ART.


Subject(s)
Molecular Imaging/methods , Simian Immunodeficiency Virus/growth & development , Animals , Genes, Reporter , Imaging, Three-Dimensional , Luminescent Measurements/methods , Magnetic Resonance Imaging/methods , Male , Mice, Nude , Positron-Emission Tomography/methods , Simian Immunodeficiency Virus/genetics , Transduction, Genetic , Vesiculovirus/genetics
11.
J Gene Med ; 15(2): 93-101, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23303531

ABSTRACT

BACKGROUND: Almost one-third of all human genetic diseases are the result of nonsense mutations that can result in truncated proteins. Nonsense suppressor tRNAs (NSTs) were proposed as valuable tools for gene therapy of genetic diseases caused by premature termination codons (PTCs). Although various strategies have been adapted aiming to increase NST expression and efficacy, low suppression efficacies of NSTs and toxicity associated with stable expression of suppressor tRNAs have hampered the development of NST-mediated gene therapy. METHODS: We have employed the U6 promoter to enhance Gln-Amber suppressor tRNA (GlnUAG) expression and to increase PTC suppression in mammalian cells. In an attempt to study the toxic effects of NSTs, a stable 293 cell line constitutively expressing a U6 promoter-enhanced GlnUAG tRNA was established. To examine whether any proteomic changes occurred in cells that constitutively express suppressor tRNA, whole cell proteins from cells with and without any suppressor tRNA expression were analyzed. RESULTS: The data obtained suggest that U6 promoter-enhanced GlnUAG tRNAs have higher suppression efficacies than multimers of the same suppressor tRNA without a U6 promoter. Proteomic analysis of cells constitutively expressing the GlnUAG suppressor tRNA indicates that stable expression of NSTs may not lead to significant read through of normal cellular proteins. CONCLUSIONS: Because most tRNAs have cell-specific differential expression, this technique will enable the expression of different kinds of suppressor tRNAs in various cell types at high, functionally relevant levels. The techniques developed in the present study may contribute to the further development of suppressor tRNA-mediated gene therapy.


Subject(s)
Genes, Suppressor , Promoter Regions, Genetic , RNA, Transfer/genetics , Anticodon/chemistry , Anticodon/genetics , Blotting, Western , Cloning, Molecular , Codon, Nonsense , Electrophoresis, Gel, Two-Dimensional , Gene Expression , Genetic Therapy/methods , Genetic Vectors , Glutamine/chemistry , Glutamine/genetics , HEK293 Cells , Humans , Lentivirus/genetics , Proteomics , RNA, Transfer/chemistry , Reverse Transcriptase Polymerase Chain Reaction
12.
Lab Invest ; 92(4): 636-45, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22330343

ABSTRACT

Macrophages have an important role in the pathogenesis of most chronic inflammatory diseases. A means of non-invasively quantifying macrophage migration would contribute significantly towards our understanding of chronic inflammatory processes and aid the evaluation of novel therapeutic strategies. We describe the use of a perfluorocarbon tracer reagent and in vivo (19)F magnetic resonance imaging (MRI) to quantify macrophage burden longitudinally. We apply these methods to evaluate the severity and three-dimensional distribution of macrophages in a murine model of inflammatory bowel disease (IBD). MRI results were validated by histological analysis, immunofluorescence and quantitative real-time polymerase chain reaction. Selective depletion of macrophages in vivo was also performed, further validating that macrophage accumulation of perfluorocarbon tracers was the basis of (19)F MRI signals observed in the bowel. We tested the effects of two common clinical drugs, dexamethasone and cyclosporine A, on IBD progression. Whereas cyclosporine A provided mild therapeutic effect, unexpectedly dexamethasone enhanced colon inflammation, especially in the descending colon. Overall, (19)F MRI can be used to evaluate early-stage inflammation in IBD and is suitable for evaluating putative therapeutics. Due to its high macrophage specificity and quantitative ability, we envisage (19)F MRI having an important role in evaluating a wide range of chronic inflammatory conditions mediated by macrophages.


Subject(s)
Fluorine , Fluorocarbons , Inflammatory Bowel Diseases/immunology , Macrophages/physiology , Animals , Anti-Inflammatory Agents/therapeutic use , Colon/immunology , Colon/pathology , Cyclosporine/therapeutic use , Dexamethasone/therapeutic use , Female , Hyperplasia , Immunosuppressive Agents/therapeutic use , Inflammatory Bowel Diseases/diagnosis , Inflammatory Bowel Diseases/drug therapy , Interleukin-10/genetics , Intestinal Mucosa/pathology , Magnetic Resonance Imaging , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Confocal , Real-Time Polymerase Chain Reaction
13.
Biotechniques ; 50(4): 229-34, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21548906

ABSTRACT

Quantification of inflammation in tissue samples can be a time-intensive bottleneck in therapeutic discovery and preclinical endeavors. We describe a versatile and rapid approach to quantitatively assay macrophage burden in intact tissue samples. Perfluorocarbon (PFC) emulsion is injected intravenously, and the emulsion droplets are effectively taken up by monocytes and macrophages. These 'in situ' labeled cells participate in inflammatory events in vivo resulting in PFC accumulation at inflammatory loci. Necropsied tissues or intact organs are subjected to conventional fluorine-19 ((19)F) NMR spectroscopy to quantify the total fluorine content per sample, proportional to the macrophage burden. We applied these methods to a rat model of experimental allergic encephalomyelitis (EAE) exhibiting extensive inflammation and demyelination in the central nervous system (CNS), particularly in the spinal cord. In a cohort of EAE rats, we used (19)F NMR to derive an inflammation index (IFI) in intact CNS tissues. Immunohistochemistry was used to confirm intracellular colocalization of the PFC droplets within CNS CD68+ cells having macrophage morphology. The IFI linearly correlated to mRNA levels of CD68 via real-time PCR analysis. This (19)F NMR approach can accelerate tissue analysis by at least an order of magnitude compared with histological approaches.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/pathology , Fluorocarbons/chemistry , Inflammation/pathology , Nuclear Magnetic Resonance, Biomolecular/methods , Animals , Demyelinating Diseases , Emulsions , Encephalomyelitis, Autoimmune, Experimental/immunology , Female , Fluorine/chemistry , Histocytochemistry , Inflammation/immunology , Linear Models , Macrophages/immunology , Macrophages/pathology , Monocytes/immunology , Monocytes/pathology , Rats , Spinal Cord/immunology , Spinal Cord/pathology
14.
Magn Reson Med ; 64(5): 1252-9, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20860007

ABSTRACT

Preclinical development of therapeutic agents against cancer could greatly benefit from noninvasive markers of tumor killing. Potentially, the intracellular partial pressure of oxygen (pO(2) ) can be used as an early marker of antitumor efficacy. Here, the feasibility of measuring intracellular pO(2) of central nervous system glioma cells in vivo using (19) F magnetic resonance techniques is examined. Rat 9L glioma cells were labeled with perfluoro-15-crown-5-ether ex vivo and then implanted into the rat striatum. (19) F MRI was used to visualize tumor location in vivo. The mean (19) F T(1) of the implanted cells was measured using localized, single-voxel spectroscopy. The intracellular pO(2) in tumor cells was determined from an in vitro calibration curve. The basal pO(2) of 9L cells (day 3) was determined to be 45.3 ± 5 mmHg (n = 6). Rats were then treated with a 1 × LD10 dose of bischloroethylnitrosourea intravenously and changes in intracellular pO(2) were monitored. The pO(2) increased significantly (P = 0.042, paired T-test) to 141.8 ± 3 mmHg within 18 h after bischloroethylnitrosourea treatment (day 4) and remained elevated (165 ± 24 mmHg) for at least 72 h (day 6). Intracellular localization of the perfluoro-15-crown-5-ether emulsion in 9L cells before and after bischloroethylnitrosourea treatment was confirmed by histological examination and fluorescence microscopy. Overall, noninvasive (19) F magnetic resonance techniques may provide a valuable preclinical tool for monitoring therapeutic response against central nervous system or other deep-seated tumors.


Subject(s)
Fluorine Radioisotopes , Glioma/drug therapy , Glioma/metabolism , Magnetic Resonance Imaging/methods , Oximetry/methods , Oxygen/metabolism , Animals , Antineoplastic Agents, Alkylating/therapeutic use , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Female , Glioma/diagnosis , Radiopharmaceuticals , Rats , Rats, Inbred F344 , Staining and Labeling/methods , Treatment Outcome
15.
Int J Data Min Bioinform ; 3(4): 454-68, 2009.
Article in English | MEDLINE | ID: mdl-20052907

ABSTRACT

Due to insufficient experimental restraints, a biologically critical loop region in PrP(c) (residues 167-171), which is a potential binding site for Protein X, is under-determined in most mammalian species. Here, we show that by adding information about distance constraints derived from a database of high-resolution protein structures, this under-determined loop as well as other secondary structural elements of the E200K variant of Human Prion Protein (hPrP(c)), a disease-related isoform, can be refined into more realistic structures in the structural ensemble with improved quality and increased accuracy. In particular, the ensemble becomes more compact after the refinement and the percentage of residues in the most favourable region of the Ramachandran diagram is increased to about 90% in the refined structures from the 80% to 85% range in the previously reported structures.


Subject(s)
Computational Biology/methods , PrPC Proteins/chemistry , Binding Sites , Databases, Protein , Humans , Protein Conformation , Protein Folding
SELECTION OF CITATIONS
SEARCH DETAIL
...