Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurotrauma ; 31(21): 1807-13, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-24836764

ABSTRACT

Inflammation of the spinal cord after traumatic spinal cord injury (SCI) leads to destruction of healthy tissue. This "secondary degeneration" is more damaging than the initial physical damage and is the major contributor to permanent loss of functions. In our previous study, we showed that combined delivery of two growth factors, vascular endothelial growth factor and platelet-derived growth factor, significantly reduced secondary degeneration after hemisection injury of the spinal cord in the rat. Growth factor treatment reduced the size of the lesion cavity at 30 days, compared to control animals, and further reduced the cavity at 90 days in treated animals, whereas in control animals the lesion cavity continued to increase in size. Growth factor treatment also reduced astrogliosis and reduced macroglia/macrophage activation around the injury site. Treatment with individual growth factors alone had similar effects to control treatments. The present study investigated whether growth factor treatment would improve locomotor behavior after spinal contusion injury, a more relevant pre-clinical model of SCI. The growth factors were delivered for the first 7 days to the injury site by osmotic minipump. Locomotor behavior was monitored at 1-28 days after injury using the Basso, Beattie and Bresnahan (BBB) score and at 30 days using automated gait analysis. Treated animals had BBB scores of 18; control animals scored 10. Treated animals had significantly reduced lesion cavities and reduced macroglia/macrophage activation around the injury site. We conclude that growth factor treatment preserved spinal cord tissues after contusion injury, thereby allowing functional recovery. This treatment has the potential to significantly reduce the severity of human spinal cord injuries.


Subject(s)
Motor Activity/drug effects , Platelet-Derived Growth Factor/therapeutic use , Recovery of Function/drug effects , Spinal Cord Injuries/drug therapy , Vascular Endothelial Growth Factor A/therapeutic use , Animals , Behavior, Animal/drug effects , Behavior, Animal/physiology , Contusions/drug therapy , Contusions/pathology , Contusions/physiopathology , Female , Motor Activity/physiology , Platelet-Derived Growth Factor/pharmacology , Rats , Rats, Wistar , Recovery of Function/physiology , Spinal Cord Injuries/pathology , Spinal Cord Injuries/physiopathology , Vascular Endothelial Growth Factor A/pharmacology
2.
J Neurotrauma ; 29(5): 957-70, 2012 Mar 20.
Article in English | MEDLINE | ID: mdl-21568693

ABSTRACT

Trauma to the spinal cord creates an initial physical injury damaging neurons, glia, and blood vessels, which then induces a prolonged inflammatory response, leading to secondary degeneration of spinal cord tissue, and further loss of neurons and glia surrounding the initial site of injury. Angiogenesis is a critical step in tissue repair, but in the injured spinal cord angiogenesis fails; blood vessels formed initially later regress. Stabilizing the angiogenic response is therefore a potential target to improve recovery after spinal cord injury (SCI). Vascular endothelial growth factor (VEGF) can initiate angiogenesis, but cannot sustain blood vessel maturation. Platelet-derived growth factor (PDGF) can promote blood vessel stability and maturation. We therefore investigated a combined application of VEGF and PDGF as treatment for traumatic spinal cord injury, with the aim to reduce secondary degeneration by promotion of angiogenesis. Immediately after hemisection of the spinal cord in the rat we delivered VEGF and PDGF and to the injury site. One and 3 months later the size of the lesion was significantly smaller in the treated group compared to controls, and there was significantly reduced gliosis surrounding the lesion. There was no significant effect of the treatment on blood vessel density, although there was a significant reduction in the numbers of macrophages/microglia surrounding the lesion, and a shift in the distribution of morphological and immunological phenotypes of these inflammatory cells. VEGF and PDGF delivered singly exacerbated secondary degeneration, increasing the size of the lesion cavity. These results demonstrate a novel therapeutic intervention for SCI, and reveal an unanticipated synergy for these growth factors whereby they modulated inflammatory processes and created a microenvironment conducive to axon preservation/sprouting.


Subject(s)
Nerve Degeneration/prevention & control , Platelet-Derived Growth Factor/pharmacology , Spinal Cord Injuries/pathology , Vascular Endothelial Growth Factor A/pharmacology , Animals , Fluorescent Antibody Technique , Male , Nerve Degeneration/etiology , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...