Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Cogn ; 166: 105953, 2023 03.
Article in English | MEDLINE | ID: mdl-36702069

ABSTRACT

Passive exercise occurs when an individual's limbs are moved via an external force and is a modality that increases cerebral blood flow (CBF) and provides an immediate postexercise executive function (EF) benefit. To our knowledge, no work has examined for how long passive exercise benefits EF. Here, healthy young adults (N = 22; 7 female) used a cycle ergometer to complete three 20-min conditions: passive exercise (via mechanically driven flywheel), a traditional light intensity (37 W) "active" exercise condition (i.e., via volitional pedalling) and a non-exercise control condition. An estimate of CBF was obtained via transcranial Doppler ultrasound measurement of middle cerebral artery blood velocity (MCAv) and antisaccades (i.e., saccade mirror-symmetrical to a target) were completed prior to and immediately, 30- and 60-min following each condition to assess EF. Passive and active exercise increased MCAv; however, the increase was larger in the latter condition. In terms of antisaccades, passive and active exercise provided an immediate postexercise reaction time benefit. At the 30-min assessment, the benefit was observed for active but not passive exercise and neither produced a benefit at the 60-min assessment. Thus, passive exercise provided an evanescent EF "boost" and is a finding that may reflect a smaller cortical hemodynamic response.


Subject(s)
Executive Function , Saccades , Young Adult , Humans , Female , Executive Function/physiology , Middle Cerebral Artery/diagnostic imaging , Cerebrovascular Circulation/physiology , Reaction Time/physiology , Blood Flow Velocity/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...