Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Pain ; 164(10): 2285-2295, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37326674

ABSTRACT

ABSTRACT: This observational study aimed to determine whether individuals with fibromyalgia (FM) exhibit higher levels of neuroinflammation than healthy controls (HCs), as measured with positron emission tomography using [ 18 F]DPA-714, a second-generation radioligand for the translocator protein (TSPO). Fifteen women with FM and 10 HCs underwent neuroimaging. Distribution volume (V T ) was calculated for in 28 regions of interest (ROIs) using Logan graphical analysis and compared between groups using multiple linear regressions. Group (FM vs HC) was the main predictor of interest and TSPO binding status (high- vs mixed-affinity) was added as a covariate. The FM group had higher V T in the right postcentral gyrus ( b = 0.477, P = 0.033), right occipital gray matter (GM; b = 0.438, P = 0.039), and the right temporal GM ( b = 0.466, P = 0.042). The FM group also had lower V T than HCs in the left isthmus of the cingulate gyrus ( b = -0.553, P = 0.014). In the subgroup of high-affinity binders, the FM group had higher V T in the bilateral precuneus, postcentral gyrus, parietal GM, occipital GM, and supramarginal gyrus. Group differences in the right parietal GM were associated with decreased quality of life, higher pain severity and interference, and cognitive problems. In support of our hypothesis, we found increased radioligand binding (V T ) in the FM group compared with HCs in several brain regions regardless of participants' TSPO binding status. The ROIs overlapped with prior reports of increased TSPO binding in FM. Overall, increasing evidence supports the hypothesis that FM involves microglia-mediated neuroinflammation in the brain.


Subject(s)
Fibromyalgia , Humans , Female , Fibromyalgia/complications , Fibromyalgia/diagnostic imaging , Fibromyalgia/metabolism , Neuroinflammatory Diseases , Quality of Life , Positron-Emission Tomography/methods , Brain/diagnostic imaging , Brain/metabolism , Receptors, GABA/metabolism
2.
Brain Behav Immun Health ; 30: 100624, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37114015

ABSTRACT

Background: The pathophysiology of fibromyalgia (FM) is thought to include an overactive immune system, leading to central nervous system sensitization, allodynia, and hyperalgesia. We aimed to test this theory using an experimental immune system activation procedure and neuroimaging with magnetic resonance spectroscopic imaging (MRSI). Methods: Twelve women with FM and 13 healthy women (healthy controls; HC) received 0.3 or 0.4 ng/kg endotoxin and underwent MRSI before and after the infusion. Changes in brain levels of choline (CHO), myo-inositol (MI), N-Acetylaspartate (NAA), and MRSI-derived brain temperature were compared between groups and dosage levels using mixed analyses of variance. Results: Significant group-by-time interactions in brain temperature were found in the right thalamus. Post-hoc testing revealed that brain temperature increased by 0.55 °C in the right thalamus in FM (t(10) = -3.483, p = 0.006), but not in HCs (p > 0.05). Dose-by-time interactions revealed brain temperature increases in the right insula after 0.4 ng/kg (t(12) = -4.074, p = 0.002), but not after 0.3 ng/kg (p > 0.05). Dose-by-time interactions revealed decreased CHO in the right Rolandic operculum after 0.4 ng/kg endotoxin (t(13) = 3.242, p = 0.006) but not 0.3 ng/kg. In the left paracentral lobule, CHO decreased after 0.3 ng/kg (t(9) = 2.574, p = 0.030) but not 0.4 ng/kg. Dose-by-time interactions affected MI in several brain regions. MI increased after 0.3 ng/kg in the right Rolandic operculum (t(10) = -2.374, p = 0.039), left supplementary motor area (t(9) = -2.303, p = 0.047), and left occipital lobe (t(10) = -3.757, p = 0.004), with no changes after 0.4 ng/kg (p > 0.05). Group-by time interactions revealed decreased NAA in the left Rolandic operculum in FM (t(13) = 2.664, p = 0.019), but not in HCs (p > 0.05). A dose-by-time interaction showed decreased NAA in the left paracentral lobule after 0.3 ng/kg (t(9) = 3.071, p = 0.013) but not after 0.4 ng/kg (p > 0.05). In the combined sample, there was a main effect of time whereby NAA decreased in the left anterior cingulate (F[1,21] = 4.458, p = 0.047) and right parietal lobe (F[1,21] = 5.457, p = 0.029). Conclusion: We found temperature increases and NAA decreases in FM that were not seen in HCs, suggesting that FM patients may have abnormal immune responses in the brain. The 0.3 and 0.4 ng/kg had differential effects on brain temperature and metabolites, with neither dose effecting a stronger response overall. There is insufficient evidence provided by the study to determine whether FM involves abnormal central responses to low-level immune challenges.

3.
J Occup Environ Med ; 64(11): 905-911, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35902364

ABSTRACT

OBJECTIVE: The aim of the study is to investigate relationships between inflammatory analytes and symptoms of pain and fatigue in Gulf War illness (GWI). METHODS: In this preliminary study, 12 male veterans meeting GWI criteria provided daily blood samples and symptom ratings over 25 days. Linear mixed models were used to analyze associations between symptoms and sera concentrations of cytokines, acute phase proteins, insulin, and brain-derived neurotropic factor. RESULTS: Analyses included 277 days with both blood draws and self-reports. Days with worse fatigue severity were associated with higher C-reactive protein and serum amyloid A, and lower eotaxin 1. Muscle pain and joint pain were associated with leptin, monocyte chemoattractant protein 1, and interferon γ-induced protein. Joint pain was further associated with serum amyloid A and eotaxin 3. CONCLUSIONS: Gulf War illness involves fatigue and pain associated with inflammation. Conventional and novel anti-inflammatories should be further explored for the treatment of GWI.


Subject(s)
Persian Gulf Syndrome , Veterans , Male , Humans , Persian Gulf Syndrome/complications , Cytokines , Pain Measurement , Acute-Phase Proteins , Serum Amyloid A Protein , Gulf War , Fatigue , Pain , Arthralgia
4.
BMJ Open ; 12(1): e055351, 2022 Jan 06.
Article in English | MEDLINE | ID: mdl-34992118

ABSTRACT

INTRODUCTION: There is evidence that low-dose naltrexone (LDN; <5.0 mg/day) reduces pain and improves the quality of life of people with fibromyalgia syndrome (FMS). However, no randomised controlled trials with long-term follow-ups have been carried out. The INNOVA study will evaluate the add-on efficacy, safety, cost-utility and neurobiological effects of LDN for reducing pain in patients with FMS, with a 1-year follow-up. METHODS AND ANALYSIS: A single-site, prospective, randomised, double-blinded, placebo-controlled, parallel design phase III trial will be performed. Eligibility criteria include being adult, having a diagnosis of FMS and experiencing pain of 4 or higher on a 10-point numerical rating scale. Participants will be randomised to a LDN intervention group (4.5 mg/day) or to a placebo control group. Clinical assessments will be performed at baseline (T0), 3 months (T1), 6 months (T2) and 12 months (T3). The primary endpoint will be pain intensity. A sample size of 60 patients per study arm (120 in total), as calculated prior to recruitment for sufficient power, will be monitored between January 2022 and August 2024. Assessment will also include daily ecological momentary evaluations of FMS-related symptoms (eg, pain intensity, fatigue and sleep disturbance), and side effects via ecological momentary assessment through the Pain Monitor app during the first 3 months. Costs and quality-adjusted life years will be also calculated. Half of the participants in each arm will be scanned with MRI at T0 and T1 for changes in brain metabolites related to neuroinflammation and central sensitisation. Inflammatory biomarkers in serum will also be measured. ETHICS AND DISSEMINATION: This study has been approved by the Ethics Committee of the Fundació Sant Joan de Déu. The results will be actively disseminated through peer-reviewed journals, conference presentations, social media and community engagement activities. TRIAL REGISTRATION NUMBER: NCT04739995.


Subject(s)
Fibromyalgia , Naltrexone , Adult , Clinical Trials, Phase III as Topic , Double-Blind Method , Fibromyalgia/drug therapy , Humans , Naltrexone/therapeutic use , Prospective Studies , Quality of Life , Randomized Controlled Trials as Topic
5.
PM R ; 14(4): 472-485, 2022 04.
Article in English | MEDLINE | ID: mdl-33930238

ABSTRACT

BACKGROUND: Evidence suggests that neurometabolic abnormalities can persist after traumatic brain injury (TBI) and drive clinical symptoms such as fatigue and cognitive disruption. Magnetic resonance spectroscopy has been used to investigate metabolite abnormalities following TBI, but few studies have obtained data beyond the subacute stage or over large brain regions. OBJECTIVE: To measure whole-brain metabolites in chronic stages of TBI. DESIGN: Observational study. SETTING: University. PARTICIPANTS: Eleven men with a moderate or severe TBI more than 12 months prior and 10 age-matched healthy controls completed whole-brain spectroscopic imaging. MAIN MEASURES: Ratios of N-acetylaspartate (NAA), choline (CHO), and myo-inositol (MI) to creatine (CR) were measured in whole-brain gray and white matter as well as 64 brain regions of interest. Arterial spin labeling (ASL) data were also collected to investigate whether metabolite abnormalities were accompanied by differences in cerebral perfusion. RESULTS: There were no differences in metabolite ratios within whole-brain gray and white matter regions of interest (ROIs). Linear regression showed lower NAA/CR in the white matter of the left occipital lobe but higher NAA/CR in the gray matter of the left parietal lobe. Metabolite abnormalities were observed in several brain regions in the TBI group including the corpus callosum, putamen, and posterior cingulate. However, none of the findings survived correction for multiple comparison. There were no differences in cerebral blood flow between patients and controls. CONCLUSION: Higher MI/CR may indicate ongoing gliosis, and it has been suggested that low CHO/CR at chronic time points may indicate cell death or lack of healthy turnover and repair. However, with the small sample size of this study, we caution against the over interpretation of our results. None of the findings within ROIs survived correction for multiple comparison. Thus, they may be considered possible avenues for future research in this area.


Subject(s)
Brain Injuries, Traumatic , Brain , Brain/diagnostic imaging , Brain/pathology , Brain Injuries, Traumatic/diagnostic imaging , Choline/metabolism , Creatine/metabolism , Humans , Inositol/metabolism , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy/methods , Male
6.
Front Hum Neurosci ; 15: 780797, 2021.
Article in English | MEDLINE | ID: mdl-34899222

ABSTRACT

[This corrects the article DOI: 10.3389/fnhum.2020.598435.].

7.
Article in English | MEDLINE | ID: mdl-33802272

ABSTRACT

This report is part of a larger study designed to rapidly and efficiently screen potential treatments for Gulf War Illness (GWI) by testing nine different botanicals. In this placebo-controlled, pseudo-randomized, crossover clinical trial of 20 men with GWI, we tested three botanical agents with putative peripheral and central anti-inflammatory actions: curcumin (Curcuma longa), boswellia (Boswellia serrata), and French maritime pine bark extract (Pinus pinaster). Participants completed 30 +/- 3 days of baseline symptom reports, followed by 30 +/- 3 days of placebo, 30 +/- 3 days of lower-dose botanical, and 30 +/- 3 days of higher-dose botanical. Participants then repeated the process with a new botanical until completing up to three botanical cycles. Data were analyzed using linear mixed models. Curcumin reduced GWI symptom severity significantly more than placebo at both the lower (p < 0.0001) and higher (p = 0.0003) dosages. Boswellia was not more effective than placebo at reducing GWI symptoms at either the lower (p = 0.726) or higher (p = 0.869) dosages. Maritime pine was not more effective than placebo at the lower dosage (p = 0.954) but was more effective than placebo at the higher dosage (p = 0.006). This study provides preliminary evidence that curcumin and maritime pine may help alleviate symptoms of GWI. As a screening study, a final determination of the efficacy of these compounds for all individuals with GWI cannot be made, and further studies will need to be conducted to determine strength and durability of effects, as well as optimal dosage. These results suggest that GWI may, at least in part, involve systemic inflammatory processes. This trial was registered on ClinicalTrials.gov (NCT02909686) on 13 September 2016.


Subject(s)
Boswellia , Curcumin , Persian Gulf Syndrome , Pinus , Cross-Over Studies , Curcuma , Curcumin/therapeutic use , Gulf War , Humans , Male , Persian Gulf Syndrome/therapy , Plant Bark , Plant Extracts/therapeutic use
8.
Article in English | MEDLINE | ID: mdl-33802381

ABSTRACT

A chronic multi-symptom illness of unknown etiology, Gulf War Illness (GWI) affects 175,000 to 250,000 veterans of the Gulf War. Because inflammation has suspected involvement in the pathophysiology of GWI, botanical treatments that target inflammation may be beneficial in reducing symptoms. No FDA-approved treatments currently exist for GWI, and rapid prioritization of agents for future efficacy testing is important. This study is part of a larger project that screened nine different botanical compounds with purported anti-inflammatory properties for potential treatment of GWI. We tested three botanicals (resveratrol [Polygonum cuspidatum], luteolin, and fisetin [Rhus succedanea]) on symptom severity of GWI in this placebo-controlled, pseudo-randomized clinical trial. Twenty-one male veterans with GWI completed the study protocol, which consisted of 1 month (30 days ± 3) of baseline symptom reports, 1 month of placebo, 1 month of lower-dose botanical, and 1 month of higher-dose botanical. Participants completed up to 3 different botanicals, repeating the placebo, lower-dose, and higher-dose cycle for each botanical assigned. Linear mixed models were used for analyses. Resveratrol reduced GWI symptom severity significantly more than placebo at both the lower (p = 0.035) and higher (p = 0.004) dosages. Luteolin did not decrease symptom severity more than placebo at either the lower (p = 0.718) or higher dosages (p = 0.492). Similarly, fisetin did not reduce symptom severity at either the lower (p = 0.504) or higher (p = 0.616) dosages. Preliminary findings from this screening study suggest that resveratrol may be beneficial in reducing symptoms of GWI and should be prioritized for future testing. Larger trials are required to determine efficacy, response rates, durability of effects, safety, and optimal dosage. This trial was registered on ClinicalTrials.gov (NCT02909686) on 13 September 2016.


Subject(s)
Fallopia japonica , Persian Gulf Syndrome , Rhus , Cross-Over Studies , Flavonols , Gulf War , Humans , Luteolin/therapeutic use , Male , Resveratrol
9.
J Pain Res ; 14: 189-200, 2021.
Article in English | MEDLINE | ID: mdl-33542651

ABSTRACT

OBJECTIVE: Fibromyalgia (FM) is a debilitating chronic pain condition with few treatment options. Central sensitization and neuroinflammation have been forwarded as models of FM pathophysiology, both of which indicate dextromethorphan (DXM) as a potential treatment. DXM is an NMDA-receptor antagonist and microglial modulator with anti-neuroinflammatory properties at low doses. It is available for clinical use but has not been tested as a treatment for FM at low dosages. This study evaluated the effectiveness of DXM in treating FM-associated symptoms. METHODS: In a single-blind, placebo-controlled trial, 14 women meeting the 2010 American College of Rheumatology criteria for FM received a placebo for five weeks, followed by 20 mg DXM for ten weeks, while providing daily symptom reports on a 0-100 scale. Pain and physical activity were the primary and secondary outcomes, respectively. Daily symptom ratings during the last four weeks of placebo were contrasted with ratings during the last four weeks of the active treatment using generalized estimating equations (GEE). RESULTS: DXM was well tolerated, and treatment adherence was high. Baseline pain was reduced by at least 20% in six participants. Self-reported daily pain and physical activity in the entire cohort were not significantly different between the placebo and DXM conditions, and the primary hypotheses were not supported. Exploratory analyses using the entire placebo and DXM data showed that pain was significantly lower in the DXM condition than in the placebo condition (b=-9.933, p=0.013). DISCUSSION: A strong clinical effect of DXM was not observed at the 20mg/day dosage.

10.
J Labelled Comp Radiopharm ; 64(5): 209-216, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33326139

ABSTRACT

[89 Zr]Oxinate4 is a Positron Emission Tomography (PET) tracer for cell radiolabeling that can enable imaging techniques to help better understand cell trafficking in various diseases. Although several groups have synthetized this compound for use in preclinical studies, there is no available data regarding the production of [89 Zr]Oxinate4 for human use. In this report, we describe the detailed production of [89 Zr]Oxinate4 under USP <823> and autologous leukocyte radiolabeling under USP <797>. The final product presented high radiochemical purity and stability at 24 h post synthesis (>99%) and passed in all quality control assays required for clinical use. [89 Zr]Oxinate4 did not compromise the white blood cells viability and did not show considerable cellular efflux up to 3 h post labeling. The translation of this technique into human use can provide insight into several disease mechanisms since [89 Zr]Oxinate4 has the potential to label any cell subset of interest.


Subject(s)
Positron-Emission Tomography
11.
Clin Rheumatol ; 39(6): 1765-1774, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32002761

ABSTRACT

INTRODUCTION/OBJECTIVES: Many individuals with rheumatoid arthritis (RA) report persistent fatigue even after management of peripheral disease activity. This study used whole-brain magnetic resonance spectroscopic imaging (MRSI) to investigate whether abnormal inflammatory activity in the central nervous system may be associated with such symptoms. We hypothesized that RA patients would show higher brain choline (CHO), myo-inositol (MI), and lactate (LAC), and higher brain temperature than healthy controls. We further hypothesized that the metabolite levels would be positively correlated with self-reported fatigue. METHOD: Thirteen women with RA provided fatigue severity ratings and underwent whole-brain MRSI and a joint examination. Thirteen healthy controls (HC) provided comparison imaging and fatigue data. CHO, MI, LAC, and brain temperature in 47 brain regions were contrasted between groups using independent-samples t tests. Significant differences were determined using a false discovery rate (FDR)-adjusted p value threshold of ≤ 0.0023. Secondary analyses obtained correlations between imaging and clinical outcomes in the RA group. RESULTS: No brain metabolic differences were identified between the groups. In the RA group, fatigue severity was positively correlated with CHO in several brain regions-most strongly the right frontal lobe (rs = 0.823, p < 0.001). MI was similarly correlated with fatigue, particularly in the right calcarine fissure (rs = 0.829, p < 0.001). CHO in several regions was positively correlated with joint swelling and tenderness. CONCLUSIONS: We conclude that abnormal brain metabolites are not a common feature of RA, but may been seen in patients with persistent fatigue or disease activity after conventional treatment.Key Points• Whole-brain magnetic resonance spectroscopy revealed no metabolic abnormalities in the brain in patients with rheumatoid arthritis.• Brain choline levels were correlated with fatigue severity reported by RA patients and with peripheral joint swelling and tenderness.• Brain myo-inositol levels were similarly correlated with fatigue severity in RA patients.


Subject(s)
Arthritis, Rheumatoid/diagnostic imaging , Brain/diagnostic imaging , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Adult , Arthritis, Rheumatoid/metabolism , Brain/metabolism , Case-Control Studies , Choline/metabolism , Female , Humans , Inositol/metabolism , Lactic Acid/metabolism , Male , Middle Aged
12.
Brain Imaging Behav ; 14(2): 562-572, 2020 Apr.
Article in English | MEDLINE | ID: mdl-30617782

ABSTRACT

Previous neuroimaging studies have detected markers of neuroinflammation in patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Magnetic Resonance Spectroscopy (MRS) is suitable for measuring brain metabolites linked to inflammation, but has only been applied to discrete regions of interest in ME/CFS. We extended the MRS analysis of ME/CFS by capturing multi-voxel information across the entire brain. Additionally, we tested whether MRS-derived brain temperature is elevated in ME/CFS patients. Fifteen women with ME/CFS and 15 age- and gender-matched healthy controls completed fatigue and mood symptom questionnaires and whole-brain echo-planar spectroscopic imaging (EPSI). Choline (CHO), myo-inositol (MI), lactate (LAC), and N-acetylaspartate (NAA) were quantified in 47 regions, expressed as ratios over creatine (CR), and compared between ME/CFS patients and controls using independent-samples t-tests. Brain temperature was similarly tested between groups. Significant between-group differences were detected in several regions, most notably elevated CHO/CR in the left anterior cingulate (p < 0.001). Metabolite ratios in seven regions were correlated with fatigue (p < 0.05). ME/CFS patients had increased temperature in the right insula, putamen, frontal cortex, thalamus, and the cerebellum (all p < 0.05), which was not attributable to increased body temperature or differences in cerebral perfusion. Brain temperature increases converged with elevated LAC/CR in the right insula, right thalamus, and cerebellum (all p < 0.05). We report metabolite and temperature abnormalities in ME/CFS patients in widely distributed regions. Our findings may indicate that ME/CFS involves neuroinflammation.


Subject(s)
Fatigue Syndrome, Chronic/metabolism , Neuroimmunomodulation/physiology , Adult , Aspartic Acid/analogs & derivatives , Aspartic Acid/analysis , Brain/pathology , Choline/analysis , Creatine/metabolism , Fatigue/metabolism , Fatigue Syndrome, Chronic/diagnostic imaging , Fatigue Syndrome, Chronic/physiopathology , Female , Humans , Inositol/analysis , Lactic Acid/analysis , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy/methods , Male , Middle Aged , Neuroimaging/methods
13.
Front Hum Neurosci ; 14: 598435, 2020.
Article in English | MEDLINE | ID: mdl-33424566

ABSTRACT

Background: Magnetic resonance spectroscopic imaging (MRSI) is a neuroimaging technique that may be useful for non-invasive mapping of brain temperature (i.e., thermometry) over a large brain volume. To date, intra-subject reproducibility of MRSI-based brain temperature (MRSI-t) has not been investigated. The objective of this repeated measures MRSI-t study was to establish intra-subject reproducibility and repeatability of brain temperature, as well as typical brain temperature range. Methods: Healthy participants aged 23-46 years (N = 18; 7 females) were scanned at two time points ~12-weeks apart. Volumetric MRSI data were processed by reconstructing metabolite and water images using parametric spectral analysis. Brain temperature was derived using the frequency difference between water and creatine (TCRE) for 47 regions of interest (ROIs) delineated by the modified Automated Anatomical Labeling (AAL) atlas. Reproducibility was measured using the coefficient of variation for repeated measures (COVrep), and repeatability was determined using the standard error of measurement (SEM). For each region, the upper and lower bounds of Minimal Detectable Change (MDC) were established to characterize the typical range of TCRE values. Results: The mean global brain temperature over all subjects was 37.2°C with spatial variations across ROIs. There was a significant main effect for time [F (1, 1,591) = 37.0, p < 0.0001] and for brain region [F (46, 1,591) = 2.66, p < 0.0001]. The time*brain region interaction was not significant [F (46, 1,591) = 0.80, p = 0.83]. Participants' TCRE was stable for each ROI across both time points, with ROIs' COVrep ranging from 0.81 to 3.08% (mean COVrep = 1.92%); majority of ROIs had a COVrep <2.0%. Conclusions: Brain temperature measurements were highly consistent between both time points, indicating high reproducibility and repeatability of MRSI-t. MRSI-t may be a promising diagnostic, prognostic, and therapeutic tool for non-invasively monitoring brain temperature changes in health and disease. However, further studies of healthy participants with larger sample size(s) and numerous repeated acquisitions are imperative for establishing a reference range of typical brain TCRE, as well as the threshold above which TCRE is likely pathological.

14.
Exp Clin Psychopharmacol ; 27(4): 370-382, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31120281

ABSTRACT

Chronic pain states have resulted in an overreliance on opioid pain relievers, which can carry significant risks when used long term. As such, alternative pain treatments are increasingly desired. Although emerging research suggests that cannabinoids have therapeutic potential regarding pain, results from studies across pain populations have been inconsistent. To provide meta-analytic clarification regarding cannabis's impact on subjective pain, we identified studies that assessed drug-induced pain modulations under cannabinoid and corresponding placebo conditions. A literature search yielded 25 peer-reviewed records that underwent data extraction. Baseline and end-point data were used to compute standardized effect size estimates (Cohen's d) across cannabinoid administrations (k = 39) and placebo administrations (k = 26). Standardized effects were inverse-variance weighted and pooled across studies for meta-analytic comparison. Results revealed that cannabinoid administration produced a medium-to-large effect across included studies, Cohen's d = -0.58, 95% confidence interval (CI) [-0.74, -0.43], while placebo administration produced a small-to-medium effect, Cohen's d = -0.39, 95% CI [-0.52, -0.26]. Meta-regression revealed that cannabinoids, ß = -0.43, 95% CI [-0.62, -0.24], p < .05, synthetic cannabinoids, ß = -0.39, 95% CI [-0.65, -0.14], p < .05, and sample size, ß = 0.01, 95% CI [0.00, 0.01], p < .05, were associated with marked pain reduction. These outcomes suggest that cannabinoid-based pharmacotherapies may serve as effective replacement/adjunctive options regarding pain, however, additional research is warranted. Additionally, given demonstrated neurocognitive side effects associated with some constituent cannabinoids (i.e., THC), subsequent work may consider developing novel therapeutic agents that capitalize on cannabis's analgesic properties without producing adverse effects. (PsycINFO Database Record (c) 2019 APA, all rights reserved).


Subject(s)
Cannabinoids/therapeutic use , Analgesics, Opioid/therapeutic use , Chronic Pain/drug therapy , Humans
16.
Spine (Phila Pa 1976) ; 43(12): E697-E702, 2018 06 15.
Article in English | MEDLINE | ID: mdl-29077602

ABSTRACT

STUDY DESIGN: An experimental study. OBJECTIVE: This study aimed to investigate task-dependent changes in fractional anisotropy (FA) within the spinal cord during painful stimulation. SUMMARY OF BACKGROUND DATA: Earlier experiments by Mandl et al (2008, 2013) used non-invasive functional diffusion tensor imaging (fDTI) to detect white matter fibers that were active during functional tasks. In two studies, it was observed that FA of involved white matter tracts exhibited repeatable task-related increases. In this study, we attempted to extend the fDTI work in the spinal cord. METHODS: Twenty-three healthy, right-handed men (mean age 22 yrs, standard deviation [SD] = 4) were invited to participate in this study. Diffusion-weighted images were collected over spinal levels C2 to T4 during a painful thermal stimulus applied to the left thenar eminence. In order to investigate task-related activity, FA values within the contralateral (right) spinothalamic tract were analyzed using a generalized estimating equations (GEE) procedure. As a control, we also examined activity in the ipsilateral and contralateral corticospinal tracts, which are not considered to be involved in nociception. RESULTS: Significant task-related decreases in FA were observed in the right spinothalamic tract at vertebral levels C2-C5 (Wald X(1) = 17.754, P < 0.001). There was no change in control regions at levels C7-T2 of the same tract, which are located below the level of input from dermatome C6, Wald X(1) = 0.185, P = 0.667. Results in all other regions assessed, that is, the left spinothalamic tract and bilateral corticospinal tract, were also not significant (P > 0.05). CONCLUSION: The current findings suggest that task-related changes in FA associated with the transmission of pain signals along the spinal cord can be detected using fDTI. We observed decreased FA values in the contralateral (right) spinothalamic tract following painful stimulation, while no such activity was apparent in control regions. LEVEL OF EVIDENCE: 5.


Subject(s)
Hot Temperature , Pain/diagnostic imaging , Spinothalamic Tracts/diagnostic imaging , Adolescent , Adult , Anisotropy , Diffusion Magnetic Resonance Imaging , Humans , Male , Young Adult
17.
Proc Natl Acad Sci U S A ; 114(34): E7150-E7158, 2017 08 22.
Article in English | MEDLINE | ID: mdl-28760971

ABSTRACT

Although some signs of inflammation have been reported previously in patients with myalgic encephalomyelitis or chronic fatigue syndrome (ME/CFS), the data are limited and contradictory. High-throughput methods now allow us to interrogate the human immune system for multiple markers of inflammation at a scale that was not previously possible. To determine whether a signature of serum cytokines could be associated with ME/CFS and correlated with disease severity and fatigue duration, cytokines of 192 ME/CFS patients and 392 healthy controls were measured using a 51-multiplex array on a Luminex system. Each cytokine's preprocessed data were regressed on ME/CFS severity plus covariates for age, sex, race, and an assay property of newly discovered importance: nonspecific binding. On average, TGF-ß was elevated (P = 0.0052) and resistin was lower (P = 0.0052) in patients compared with controls. Seventeen cytokines had a statistically significant upward linear trend that correlated with ME/CFS severity: CCL11 (Eotaxin-1), CXCL1 (GROα), CXCL10 (IP-10), IFN-γ, IL-4, IL-5, IL-7, IL-12p70, IL-13, IL-17F, leptin, G-CSF, GM-CSF, LIF, NGF, SCF, and TGF-α. Of the 17 cytokines that correlated with severity, 13 are proinflammatory, likely contributing to many of the symptoms experienced by patients and establishing a strong immune system component of the disease. Only CXCL9 (MIG) inversely correlated with fatigue duration.


Subject(s)
Cytokines/blood , Fatigue Syndrome, Chronic/blood , Adult , Aged , Biomarkers/blood , Case-Control Studies , Chemokine CXCL1/blood , Chemokine CXCL1/immunology , Chemokine CXCL10/blood , Chemokine CXCL10/immunology , Cytokines/immunology , Fatigue Syndrome, Chronic/immunology , Female , Humans , Male , Middle Aged , Severity of Illness Index , Transforming Growth Factor beta1/blood , Transforming Growth Factor beta1/immunology
18.
A A Case Rep ; 6(9): 272-6, 2016 May 01.
Article in English | MEDLINE | ID: mdl-26867023

ABSTRACT

Complex regional pain syndrome (CRPS) is evoked by conditions that may be associated with local and/or systemic inflammation. We present a case of long-standing CRPS in a patient with Ehlers-Danlos syndrome in which prolonged remission was attained by directing therapy toward concomitant small intestinal bacterial overgrowth, obstructive sleep apnea, and potential increased microglia activity. We theorize that cytokine production produced by small intestinal bacterial overgrowth and obstructive sleep apnea may act as stimuli for ongoing CRPS symptoms. CRPS may also benefit from the properties of low-dose naltrexone that blocks microglia Toll-like receptors and induces production of endorphins that regulate and reduce inflammation.


Subject(s)
Blind Loop Syndrome/drug therapy , Complex Regional Pain Syndromes/drug therapy , Inflammation Mediators , Pain Management/methods , Sleep Apnea, Obstructive/drug therapy , Blind Loop Syndrome/blood , Blind Loop Syndrome/complications , C-Reactive Protein/metabolism , Complex Regional Pain Syndromes/blood , Complex Regional Pain Syndromes/complications , Female , Humans , Inflammation Mediators/blood , Middle Aged , Naltrexone/therapeutic use , Pain Measurement/methods , Rifamycins/therapeutic use , Rifaximin , Sleep Apnea, Obstructive/blood , Sleep Apnea, Obstructive/complications , Treatment Outcome
19.
Pain Med ; 17(8): 1497-504, 2016 08.
Article in English | MEDLINE | ID: mdl-26814280

ABSTRACT

OBJECTIVE: Prolonged exposure to opioids is known to produce neuroplastic changes in animals; however, few studies have investigated the effects of short-term prescription opioid use in humans. A previous study from our laboratory demonstrated a dosage-correlated volumetric decrease in the right amygdala of participants administered oral morphine daily for 1 month. The purpose of this current study was to replicate and extend the initial findings. METHODS: Twenty-one participants with chronic low back pain were enrolled in this double-blind, placebo-controlled study. Participants were randomized to receive daily morphine (n = 11) or a matched placebo (n = 10) for 1 month. High-resolution anatomical images were acquired immediately before and after the treatment administration period. Morphological gray matter changes were investigated using tensor-based morphometry, and significant regions were subsequently tested for correlation with morphine dosage. RESULTS: Decreased gray matter volume was observed in several reward- and pain-related regions in the morphine group, including the bilateral amygdala, left inferior orbitofrontal cortex, and bilateral pre-supplementary motor areas. Morphine administration was also associated with significant gray matter increases in cingulate regions, including the mid cingulate, dorsal anterior cingulate, and ventral posterior cingulate. CONCLUSIONS: Many of the volumetric increases and decreases overlapped spatially with the previously reported changes. Individuals taking placebo for 1 month showed neither gray matter increases nor decreases. The results corroborate previous reports that rapid alterations occur in reward-related networks following short-term prescription opioid use.


Subject(s)
Amygdala/drug effects , Analgesics, Opioid/adverse effects , Gray Matter/drug effects , Low Back Pain/drug therapy , Adult , Amygdala/pathology , Double-Blind Method , Female , Gray Matter/pathology , Humans , Image Interpretation, Computer-Assisted , Magnetic Resonance Imaging , Male , Middle Aged , Morphine/adverse effects
20.
Pain Med ; 16(12): 2386-96, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26179223

ABSTRACT

OBJECTIVE: Preoperative determinants of pain duration following surgery are poorly understood. We identified preoperative predictors of prolonged pain after surgery in a mixed surgical cohort. METHODS: We conducted a prospective longitudinal study of patients undergoing mastectomy, lumpectomy, thoracotomy, total knee replacement, or total hip replacement. We measured preoperative psychological distress and substance use, and then measured pain and opioid use after surgery until patients reported the cessation of both opioid consumption and pain. The primary endpoint was time to opioid cessation, and those results have been previously reported. Here, we report preoperative determinants of time to pain resolution following surgery in Cox proportional hazards regression. RESULTS: Between January 2007 and April 2009, we enrolled 107 of 134 consecutively approached patients undergoing the aforementioned surgical procedures. In the final multivariate model, preoperative self-perceived risk of addiction predicted more prolonged pain. Unexpectedly, anxiety sensitivity predicted more rapid pain resolution after surgery. Each one-point increase (on a four point scale) of self-perceived risk of addiction was associated with a 38% (95% CI 3-61) reduction in the rate of pain resolution (P = 0.04). Furthermore, higher anxiety sensitivity was associated with an 89% (95% CI 23-190) increased rate of pain resolution (P = 0.004). CONCLUSIONS: Greater preoperative self-perceived risk of addiction, and lower anxiety sensitivity predicted a slower rate of pain resolution following surgery. Each of these factors was a better predictor of pain duration than preoperative depressive symptoms, post-traumatic stress disorder symptoms, past substance use, fear of pain, gender, age, preoperative pain, or preoperative opioid use.


Subject(s)
Analgesics, Opioid/administration & dosage , Pain Measurement/drug effects , Pain Measurement/methods , Pain, Postoperative/drug therapy , Pain, Postoperative/epidemiology , Proportional Hazards Models , California/epidemiology , Cohort Studies , Female , Humans , Longitudinal Studies , Male , Middle Aged , Pain, Postoperative/psychology , Prevalence , Prognosis , Prospective Studies , Reproducibility of Results , Risk Factors , Sensitivity and Specificity , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL