Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 261: 121994, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38955037

ABSTRACT

Biological activated carbon filter (BAC) is one of the most effective technologies for removing disinfection by-product (DBP) precursors from water. Biochar is a lower-cost medium that has the potential to replace granular activated carbon in BAC applications, thus leading to the development of biological biochar filter (BCF). This study compared BCF with BAC for the removal of DBP precursors using column experiments. Both BCF and BAC achieved the removal of DBP precursors, resulting in concentrations of all DBP formation potential below the World Health Organization guideline values for drinking water. Bromodichloromethane and unknown DBP precursor removal by BCF was comparable to that by BAC. However, BAC removed more chloroform and dichloroacetontrile precursors than BCF. For microbial community analysis, cell numbers in a bottom layer (inlet) of BCF and BAC columns were higher than those in the top layer. The abundances of Nordella and a microbial genus from Burkholderiaceae at the bottom layer showed a strong correlation to the number of DBP precursors removed and were comparable in BCF and BAC. This finding likely contributes to the similarities between DBPs species removed and the removal performances of some known and unknown DBP precursors by BCF and BAC. Overall results from this study revealed that biochar can be served as a low-cost and sustainable replacement of activated carbon in water filter for DBP precursor removal.

2.
J Hazard Mater ; 424(Pt C): 127691, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34775314

ABSTRACT

Biochar is a low-cost adsorbent with considerable potential for utilization as a water filtration medium; however, organic matter leaching from biochar can lead to the formation of disinfection by-products (DBPs). This study investigated the leaching of dissolved organic carbon (DOC) from eucalyptus-derived biochar and the formation of DBPs generated by chlorination and chloramination. Column experiments with empty bed contact times (EBCTs) of 10 and 30 min were conducted for 200 bed volumes (BVs). The highest DOC concentration (3.5 µg-C/g-biochar) was detected with an EBCT of 30 min. Chloroform (49 µg/L) and dichloroacetonitrile (7 µg/L) because of chlorination were found during the first five BVs, but were reduced thereafter. During the first 10 BVs, unknown chlorinated DBPs generated (CHOCl) by chlorination and chloramination (193 and 152 formulae, respectively) were tentatively identified via an unknown screening analysis. The release of DBP precursors from biochar tentatively identified in this study will impact water filtration applications.


Subject(s)
Disinfectants , Water Pollutants, Chemical , Water Purification , Charcoal , Disinfection , Dissolved Organic Matter , Halogenation , Mass Spectrometry , Water Pollutants, Chemical/analysis
3.
Sci Total Environ ; 713: 136708, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32019044

ABSTRACT

Consumption of water containing high proportions of manganese could cause Parkinson's like symptoms and damage the central nervous systems. This study aims to investigate the potential of manganese removal through the development of microbial cell-immobilized biochar. The wood vinegar industry generates a large volume of carbonized wood waste (natural biochar) from the pyrolytic process. This is the first investigation utilizing this low value waste combined with biological treatment for water purification. Raw and hydrogen peroxide-modified biochars were used to immobilize an effective manganese-oxidizing bacterium, Streptomyces violarus strain SBP1 (SBP1). The results demonstrated that the modified biochar had a higher proportion of oxygen-containing functional groups leading to better manganese removal. Manganese adsorption by the modified biochar fitted pseudo-second-order and Langmuir models with the maximum adsorption capacity of 1.15 mg g-1. The modified biochar with SBP1 provided the highest removal efficiency at 78%. The advanced synchrotron analyses demonstrated that manganese removal by the biochar with SBP1 is due to the synergistic combination of manganese adsorption by biochars and biological oxidation by SBP1.


Subject(s)
Streptomyces , Adsorption , Biotransformation , Charcoal , Manganese , Water Pollutants, Chemical
SELECTION OF CITATIONS
SEARCH DETAIL
...