Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 71(28): 10486-10499, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37399190

ABSTRACT

Millions of people worldwide are deprived of sufficient, safe, and nutritious food required for an everyday and healthy life. The hunger crisis is worsening over time, even though many attempts have been made to minimize it. Increasing world population and competition for natural resources, climate change, natural disasters, urbanization, poverty, and illiteracy are the main causes that need to be addressed to reduce the hunger crisis. Various nonfarm technologies are being used to eradicate hunger but their long-term impact on the environment should also be considered. The real sustainability of several novel technologies being implemented to deal with hunger is an issue to tackle. This paper discusses the potential applications of storage facilities, underutilized crops, waste valorization, food preservation, nutritionally enriched novel food products, and technological advancement in food processing to achieve zero hunger. An attempt has also been made to address the sustainability of various nonfarm technology utilized to minimize the global hunger crisis.


Subject(s)
Hunger , Poverty , Humans , Crops, Agricultural , Food Supply
2.
J Food Sci Technol ; 60(3): 975-986, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36908343

ABSTRACT

In this study, a five-factorial central composite design was employed to optimize pectin extraction from novel source, through ultrasound-assisted extraction. A 35.58% yield was obtained under optimized conditions of pH 1.0, solid (g): liquid (mL) ratio 1:24, amplitude 84.2 Hz, duty cycle 23 s/30 s, and time 30 min. The equivalent weight, methoxyl content, anhydrouronic acid content, degree of esterification, water-holding capacity, and oil-holding capacity of the extracted pectin were 796.40 ± 2.07, 8.29 ± 0.38%, 71.32 ± 0.54%, 64.66 ± 2.08%, 8.04 ± 0.10 g water/g pectin, and 2.24 ± 030 g oil/g pectin, respectively. The chemical profile of the extracted pectin was assessed with FTIR and NMR analyses. The extracted pectin was utilized as a butter substitute in cookies. Up to 30% butter in cookies could be replaced with the extracted pectin without altering the sensory and physicochemical properties. Overall, results of presented work suggest that using waste-derived pectin as a fat substitute in cookies offers a sustainable and health-promoting approach for converting waste into wealth.

3.
J Food Sci Technol ; 60(4): 1284-1293, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36936113

ABSTRACT

Machine learning techniques were employed to evaluate the effect of process parameters viz. microwave power (100 W, 300 W, 600 W); pH (1, 1.5, 2); and microwave time (the 60 s, 120 s, 180 s) on the pectin yield from Citrus limetta peel. A fourth-order polynomial function of 66.60 scales was used by the Support Vector Regression (SVR) model at an epsilon (ε) value of 0.003. The co-efficient of determination (R2) and root mean square error-values for training data and test data were 0.984; 0.77 and 0.993; 0.66 respectively. At optimized conditions, microwave power 600 W, pH 1, and time 180 s the best yield of 32.75% was obtained. The integrity of pectin skeletal was confirmed with FTIR and 1H NMR spectrums. The physicochemical analysis revealed that CLP is a high-methoxyl pectin (HMP) with a 63.20 ± 0.88% degree of esterification, 798.45 ± 26.15 equivalent weight, 8.06 ± 0.62% methoxyl content, 67.93 ± 3.36 AUA content, 6.27 ± 0.27 g water/g pectin WHC, 2.68 ± 0.20 g oil/g pectin OHC, low moisture, ash and protein content of 6.85 ± 0.10%, 3.87 ± 0.10% and 2.61 ± 0.06% respectively, which can be utilized as a food additive. Therefore, pectin extraction from Citrus limetta peel using a greener technique like MAE is an eco-friendly, time-saving approach to transform waste into a versatile food additive.

4.
J Texture Stud ; 54(3): 365-382, 2023 06.
Article in English | MEDLINE | ID: mdl-35717605

ABSTRACT

Plant-based meat alternatives have been studied for decades, but have recently gained more attraction in the food industries and research communities. Concern about animal welfare, health, environment and moral beliefs acts as a driving force for the growth of plant-based meat products. The most challenging task in the development of meat analog is to imitate the texture of conventional meat products. The fabrication of plant-based meat product requires a wise selection and formulation of ingredients to perfectly mimic the fibrous structure of meat. Top-down and bottom-up approaches are the two most commonly used structuring techniques for the preparation of plant-based meat products. Development of comminuted meat product is easy as compared with the whole-muscle type plant-based meat products. Several plant-based ingredients such as texturized and non-texturized proteins, fats, binding agents, flavoring and coloring agents accompanied with different processing techniques (extrusion, shear cell, wet spinning, electrospinning, and freeze structuring) are used in the preparation of meat analogs. This article aims to discuss the impact of ingredients on the textural properties of plant-based meat products.


Subject(s)
Meat Products , Animals , Meat Products/analysis , Meat/analysis , Fats , Flavoring Agents
5.
Bioresour Technol ; 351: 127064, 2022 May.
Article in English | MEDLINE | ID: mdl-35351555

ABSTRACT

Globally the generation and mismanagement of waste from fruit processing and post-harvest impose a severe burden on waste management strategies along with environmental pollution, health hazards. Citrus waste is one of such worrying fruit waste, which is rich in several value-added chemicals, including pectin. Pectin is a prebiotic polysaccharide possessing a multitude of health benefits. Citrus pectin has excellent gelling, thickening, water holding capacity, and encapsulating properties, which pave its functionality in versatile industrial fields including food processing and preservation, drug and therapeutic agents, cosmetics, and personal care products. The utilization of citrus wastes to derive valuable bioproducts can offer an effective approach towards sustainable waste management. With the ever-increasing demand, several strategies have been devised to increase the efficiency of pectin recovery from citrus waste. This review article discusses the sources, effect, and technology-mediated valorization of citrus waste, the functional and nutritive application of pectin along with its socio-economic and environmental perspective.


Subject(s)
Citrus , Waste Management , Citrus/chemistry , Fruit/chemistry , Pectins , Waste Products/analysis
6.
CNS Neurol Disord Drug Targets ; 21(7): 610-620, 2022.
Article in English | MEDLINE | ID: mdl-34382514

ABSTRACT

Alzheimer's Disease (AD) is a chronic neurodegenerative disease. It is clinically characterized by memory loss and intellectual decrease, among other neurological deficits. The etiology of AD is not completely understood but includes amyloid plaques and intracellular helical filaments as well as neurofibrillary tangles with hyperphosphorylated tau protein. AD is also associated with alterations in amyloid processing genes, such as PSEN1 or PSEN2 and APP. The modulation of the immune system, cholesterol metabolism, and synaptic vesicle endocytosis have all been shown to remediate AD. In this review, enzymes such as AChE, BuChE, ß-secretase, γ-secretase, MAO, and RAGE are discussed as potential targets for AD treatment. The aim of this review was to address the molecular mechanisms as well as various genetic factors in AD etiology. The use of natural compounds against these targets might be beneficial for the management of AD.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Alzheimer Disease/complications , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Humans , Neurodegenerative Diseases/metabolism , Neurofibrillary Tangles/metabolism
7.
Curr Neuropharmacol ; 19(11): 1884-1895, 2021.
Article in English | MEDLINE | ID: mdl-33588732

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) affects several people worldwide and has devastating impacts on society with a limited number of approaches for its pharmacological treatment. The main causes of AD are not clear yet. However, the formation of senile plaques, neurofibrillary tangles, hyper-phosphorylation of tau protein, and disruption of redox homeostasis may cause AD. These causes have a positive correlation with oxidative stress, producing reactive ions, which are responsible for altering the physiological condition of the body. CONCLUSION: Ongoing research recommended the use of phytochemicals as acetylcholinesterase inhibitors to hinder the onset and progression of AD. The natural compound structures, including lignans, flavonoids, tannins, polyphenols, triterpenes, sterols, and alkaloids have anti-inflammatory, antioxidant, and anti-amyloidogenic properties. The purpose of this article is to provide a brief introduction to AD along with the use of natural compounds as new therapeutic approaches for its management.


Subject(s)
Alzheimer Disease , Acetylcholinesterase , Alzheimer Disease/drug therapy , Dietary Supplements , Humans , Neurofibrillary Tangles , Phytochemicals/therapeutic use
8.
SELECTION OF CITATIONS
SEARCH DETAIL
...