Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther ; 29(5): 1729-1743, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33484965

ABSTRACT

Extracellular vesicles (EVs) are an important intercellular communication system facilitating the transfer of macromolecules between cells. Delivery of exogenous cargo tethered to the EV surface or packaged inside the lumen are key strategies for generating therapeutic EVs. We identified two "scaffold" proteins, PTGFRN and BASP1, that are preferentially sorted into EVs and enable high-density surface display and luminal loading of a wide range of molecules, including cytokines, antibody fragments, RNA binding proteins, vaccine antigens, Cas9, and members of the TNF superfamily. Molecules were loaded into EVs at high density and exhibited potent in vitro activity when fused to full-length or truncated forms of PTGFRN or BASP1. Furthermore, these engineered EVs retained pharmacodynamic activity in a variety of animal models. This engineering platform provides a simple approach to functionalize EVs with topologically diverse macromolecules and represents a significant advance toward unlocking the therapeutic potential of EVs.


Subject(s)
Extracellular Vesicles/transplantation , Membrane Proteins/metabolism , Neoplasm Proteins/metabolism , Nerve Tissue Proteins/metabolism , Proteins/administration & dosage , Repressor Proteins/metabolism , Animals , Cell Communication , Drug Delivery Systems , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , Female , HEK293 Cells , Humans , Membrane Proteins/genetics , Mice , Neoplasm Proteins/genetics , Nerve Tissue Proteins/genetics , Repressor Proteins/genetics
2.
Cell Rep ; 22(9): 2227-2235, 2018 02 27.
Article in English | MEDLINE | ID: mdl-29490262

ABSTRACT

The development of clinically viable delivery methods presents one of the greatest challenges in the therapeutic application of CRISPR/Cas9 mediated genome editing. Here, we report the development of a lipid nanoparticle (LNP)-mediated delivery system that, with a single administration, enabled significant editing of the mouse transthyretin (Ttr) gene in the liver, with a >97% reduction in serum protein levels that persisted for at least 12 months. These results were achieved with an LNP delivery system that was biodegradable and well tolerated. The LNP delivery system was combined with a sgRNA having a chemical modification pattern that was important for high levels of in vivo activity. The formulation was similarly effective in a rat model. Our work demonstrates that this LNP system can deliver CRISPR/Cas9 components to achieve clinically relevant levels of in vivo genome editing with a concomitant reduction of TTR serum protein, highlighting the potential of this system as an effective genome editing platform.


Subject(s)
CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems/genetics , Gene Editing , Gene Transfer Techniques , Lipids/chemistry , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Animals , Base Sequence , Liver/metabolism , Mice , RNA, Guide, Kinetoplastida/chemistry , RNA, Guide, Kinetoplastida/genetics , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...