Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 27(7): 110148, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38989467

ABSTRACT

Many addictive drugs increase stress hormone levels. They also alter the propensity of organisms to prospectively select actions based on long-term consequences. We hypothesized that cocaine causes inflexible action by increasing circulating stress hormone levels, activating the glucocorticoid receptor (GR). We trained mice to generate two nose pokes for food and then required them to update action-consequence associations when one response was no longer reinforced. Cocaine delivered in adolescence or adulthood impaired the capacity of mice to update action strategies, and inhibiting CORT synthesis rescued action flexibility. Next, we reduced Nr3c1, encoding GR, in the orbitofrontal cortex (OFC), a region of the brain responsible for interlacing new information into established routines. Nr3c1 silencing preserved action flexibility and dendritic spine abundance on excitatory neurons, despite cocaine. Spines are often considered substrates for learning and memory, leading to the discovery that cocaine degrades the representation of new action memories, obstructing action flexibility.

2.
Prog Neurobiol ; 238: 102629, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763506

ABSTRACT

The dorsomedial striatum (DMS) is associated with flexible goal seeking, as opposed to routinized habits. Whether local mechanisms brake this function, for instance when habits may be adaptive, is incompletely understood. We find that a sub-population of dopamine D1 receptor-containing striatal neurons express the melanocortin-4 receptor (MC4R) for α-melanocyte stimulating hormone. These neurons within the DMS are necessary and sufficient for controlling the capacity of mice to flexibly adjust actions based on the likelihood that they will be rewarded. In investigating MC4R function, we found that it suppresses immediate-early gene levels in the DMS and concurrently, flexible goal seeking. MC4R+ neurons receive input from the central nucleus of the amygdala, and behavioral experiments indicate that they are functionally integrated into an amygdalo-striatal circuit that suppresses action flexibility in favor of routine. Publicly available spatial transcriptomics datasets were analyzed for gene transcript correlates of Mc4r expression across the striatal subregions, revealing considerable co-variation in dorsal structures. This insight led to the discovery that the function of MC4R in the dorsolateral striatum complements that in the DMS, in this case suppressing habit-like behavior. Altogether, our findings suggest that striatal MC4R controls the capacity for goal-directed and inflexible actions alike.


Subject(s)
Central Amygdaloid Nucleus , Corpus Striatum , Goals , Receptor, Melanocortin, Type 4 , Animals , Receptor, Melanocortin, Type 4/metabolism , Mice , Central Amygdaloid Nucleus/metabolism , Central Amygdaloid Nucleus/physiology , Corpus Striatum/metabolism , Corpus Striatum/physiology , Male , Receptors, Dopamine D1/metabolism , Melanocortins/metabolism , Mice, Inbred C57BL , Neural Pathways/physiology , Neural Pathways/metabolism
3.
Prog Neurobiol ; 238: 102632, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38821345

ABSTRACT

Habits are familiar behaviors triggered by cues, not outcome predictability, and are insensitive to changes in the environment. They are adaptive under many circumstances but can be considered antecedent to compulsions and intrusive thoughts that drive persistent, potentially maladaptive behavior. Whether compulsive-like and habit-like behaviors share neural substrates is still being determined. Here, we investigated mice bred to display inflexible reward-seeking behaviors that are insensitive to action consequences. We found that these mice demonstrate habitual response biases and compulsive-like grooming behavior that was reversible by fluoxetine and ketamine. They also suffer dendritic spine attrition on excitatory neurons in the orbitofrontal cortex (OFC). Nevertheless, synaptic melanocortin 4 receptor (MC4R), a factor implicated in compulsive behavior, is preserved, leading to the hypothesis that Mc4r+ OFC neurons may drive aberrant behaviors. Repeated chemogenetic stimulation of Mc4r+ OFC neurons triggered compulsive and not inflexible or habitual response biases in otherwise typical mice. Thus, Mc4r+ neurons within the OFC appear to drive compulsive-like behavior that is dissociable from habitual behavior. Understanding which neuron populations trigger distinct behaviors may advance efforts to mitigate harmful compulsions.


Subject(s)
Compulsive Behavior , Neurons , Prefrontal Cortex , Animals , Compulsive Behavior/physiopathology , Mice , Neurons/physiology , Neurons/drug effects , Neurons/metabolism , Prefrontal Cortex/drug effects , Prefrontal Cortex/physiology , Prefrontal Cortex/metabolism , Habits , Choice Behavior/physiology , Choice Behavior/drug effects , Receptor, Melanocortin, Type 4/metabolism , Male , Reward , Behavior, Animal/physiology , Behavior, Animal/drug effects , Grooming/physiology , Grooming/drug effects , Mice, Transgenic , Dendritic Spines/drug effects , Dendritic Spines/physiology , Female
4.
Biochem Biophys Res Commun ; 638: 112-119, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36446153

ABSTRACT

Synaptic dysfunction is a hallmark of aging and is found in several neurological disorders such as Alzheimer's disease. A common mechanism related to synaptic dysfunction is dysregulation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, which mediate excitatory neurotransmission and synaptic plasticity. Accumulating evidence suggests that tocotrienols, vitamin E molecules that contain an isoprenoid side chain, may promote cognitive improvement in hippocampal-dependent learning tasks. Tocotrienols have also been shown to reduce the secretion of ß-amyloid (Aß) and cholesterol biosynthesis in part by downregulating 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, the rate-limiting enzyme that controls flux of the mevalonate pathway and cholesterol biosynthesis. We hypothesized that tocotrienols might promote cognitive improvement by increasing AMPA receptor-mediated synaptic transmission. Here, we found that δ-tocotrienol increased surface levels of GluA1 but not the GluA2 AMPA receptor subunit in primary hippocampal neurons. Unexpectedly, δ-tocotrienol treatment caused a decrease in the phosphorylation of GluA1 at Serine 845 with no significant changes in GluA1 at Serine 831. Moreover, δ-tocotrienol increased spontaneous excitatory postsynaptic current (sEPSC) amplitude and reduced the secretion of Aß40 in primary hippocampal neurons. Taken together, our findings suggest that δ-tocotrienol increases AMPA receptor-mediated neurotransmission via noncanonical changes in GluA1 phosphorylation status. These findings suggest that δ-tocotrienol may be beneficial in ameliorating synaptic dysfunction found in aging and neurological disease.


Subject(s)
Receptors, AMPA , Tocotrienols , Receptors, AMPA/metabolism , Mevalonic Acid/metabolism , Tocotrienols/metabolism , Synaptic Transmission , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid , Cholesterol/metabolism , Serine/metabolism , Hippocampus/metabolism
5.
Commun Biol ; 5(1): 116, 2022 02 08.
Article in English | MEDLINE | ID: mdl-35136204

ABSTRACT

In day-to-day life, we often must choose between pursuing familiar behaviors or adjusting behaviors when new strategies might be more fruitful. The dorsomedial striatum (DMS) is indispensable for arbitrating between old and new action strategies. To uncover molecular mechanisms, we trained mice to generate nose poke responses for food, then uncoupled the predictive relationship between one action and its outcome. We then bred the mice that failed to rapidly modify responding. This breeding created offspring with the same tendencies, failing to inhibit behaviors that were not reinforced. These mice had less post-synaptic density protein 95 in the DMS. Also, densities of the melanocortin-4 receptor (MC4R), a high-affinity receptor for α-melanocyte-stimulating hormone, predicted individuals' response strategies. Specifically, high MC4R levels were associated with poor response inhibition. We next found that reducing Mc4r in the DMS in otherwise typical mice expedited response inhibition, allowing mice to modify behavior when rewards were unavailable or lost value. This process required inputs from the orbitofrontal cortex, a brain region canonically associated with response strategy switching. Thus, MC4R in the DMS appears to propel reward-seeking behavior, even when it is not fruitful, while moderating MC4R presence increases the capacity of mice to inhibit such behaviors.


Subject(s)
Plant Breeding , Receptor, Melanocortin, Type 4 , Animals , Corpus Striatum/metabolism , Mice , Receptor, Melanocortin, Type 4/genetics , Receptor, Melanocortin, Type 4/metabolism , Reward , alpha-MSH/metabolism
6.
Nutr Cancer ; 73(9): 1746-1757, 2021.
Article in English | MEDLINE | ID: mdl-32811212

ABSTRACT

Isoprenoids suppress the mevalonate pathway that provides prenyl groups for the posttranslational modification of growth-regulating proteins. We hypothesize that xanthorrhizol and d-δ-tocotrienol synergistically suppress the growth of murine B16 melanoma and human DU145 prostate carcinoma cells. Xanthorrhizol (0-200 µmol/L; half maximal inhibitory concentration [IC50] = 65 µmol/L) and d-δ-tocotrienol (0-40 µmol/L; IC50 = 20 µmol/L) each induced a concentration-dependent suppression of the proliferation of B16 cells and concurrent cell cycle arrest at the G1 phase. A blend of 16.25 µmol/L xanthorrhizol and 10 µmol/L d-δ-tocotrienol suppressed B16 cell proliferation by 69%, an impact greater than the sum of those induced by xanthorrhizol (15%) and d-δ-tocotrienol (12%) individually. The blend cumulatively reduced the levels of cyclin-dependent kinase four and cyclin D1, key regulators of cell cycle progression at the G1 phase. The expression of RAS and extracellular signal-regulated kinase (ERK1/2) in the proliferation-stimulating RAS-RAF-MEK-ERK pathway was downregulated by the blend. Xanthorrhizol also induced a concentration-dependent suppression of the proliferation of DU145 cells with concomitant morphological changes. Isobologram confirmed the synergistic effect of xanthorrhizol and d-δ-tocotrienol on DU145 cell proliferation with combination index values ranging 0.61-0.94. Novel combinations of isoprenoids with synergistic actions may offer effective approaches in cancer prevention and therapy.


Subject(s)
Carcinoma , Melanoma, Experimental , Animals , Apoptosis , Cell Cycle , Cell Line, Tumor , Cell Proliferation , Humans , Male , Mice , Phenols , Prostate , Vitamin E/analogs & derivatives
7.
Front Pharmacol ; 9: 1515, 2018.
Article in English | MEDLINE | ID: mdl-30662405

ABSTRACT

The mevalonate pathway provides sterols for membrane structure and nonsterol intermediates for the post-translational modification and membrane anchorage of growth-related proteins, including the Ras, Rac, and Rho GTPase family. Mevalonate-derived products are also essential for the Hedgehog pathway, steroid hormone signaling, and the nuclear localization of Yes-associated protein and transcriptional co-activator with PDZ-binding motif, all of which playing roles in tumorigenesis and cancer stem cell function. The phosphatidylinositol-4,5-bisphosphate 3-kinase-AKT-mammalian target of rapamycin complex 1 pathway, p53 with gain-of-function mutation, and oncoprotein MYC upregulate the mevalonate pathway, whereas adenosine monophosphate-activated protein kinase and tumor suppressor protein RB are the downregulators. The rate-limiting enzyme, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), is under a multivalent regulation. Sterol regulatory element binding protein 2 mediates the sterol-controlled transcriptional downregulation of HMGCR. UbiA prenyltransferase domain-containing protein-1 regulates the ubiquitination and proteasome-mediated degradation of HMGCR, which is accelerated by 24, 25-dihydrolanosterol and the diterpene geranylgeraniol. Statins, competitive inhibitors of HMGCR, deplete cells of mevalonate-derived intermediates and consequently inhibit cell proliferation and induce apoptosis. Clinical application of statins is marred by dose-limiting toxicities and mixed outcomes on cancer risk, survival and mortality, partially resulting from the statin-mediated compensatory upregulation of HMGCR and indiscriminate inhibition of HMGCR in normal and tumor cells. Tumor HMGCR is resistant to the sterol-mediated transcriptional control; consequently, HMGCR is upregulated in cancers derived from adrenal gland, blood and lymph, brain, breast, colon, connective tissue, embryo, esophagus, liver, lung, ovary, pancreas, prostate, skin, and stomach. Nevertheless, tumor HMGCR remains sensitive to isoprenoid-mediated degradation. Isoprenoids including monoterpenes (carvacrol, L-carvone, geraniol, perillyl alcohol), sesquiterpenes (cacalol, farnesol, ß-ionone), diterpene (geranylgeranyl acetone), "mixed" isoprenoids (tocotrienols), and their derivatives suppress the growth of tumor cells with little impact on non-malignant cells. In cancer cells derived from breast, colon, liver, mesothelium, prostate, pancreas, and skin, statins and isoprenoids, including tocotrienols, geraniol, limonene, ß-ionone and perillyl alcohol, synergistically suppress cell proliferation and associated signaling pathways. A blend of dietary lovastatin and δ-tocotrienol, each at no-effect doses, suppress the growth of implanted murine B16 melanomas in C57BL6 mice. Isoprenoids have potential as adjuvant agents to reduce the toxicities of statins in cancer prevention or therapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...