Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 26(10): 107959, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37810226

ABSTRACT

SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) causing COVID-19 (coronavirus disease 2019) poses a greater health risk to immunocompromized individuals including people living with HIV (PLWH). However, most studies on PLWH have been conducted in higher-income countries. We investigated the post-vaccination antibody responses of PLWH in Rwanda by collecting peripheral blood from participants after receiving a second or third COVID-19 vaccine. Virus-binding antibodies as well as antibody neutralization ability against all major SARS-CoV-2 variants of concern were analyzed. We found that people with high HIV viral loads and two COVID-19 vaccine doses had lower levels of binding antibodies that were less virus neutralizing and less cross-reactive compared to control groups. A third vaccination increased neutralizing antibody titers. Our data suggest that people with high HIV viral loads require a third dose of vaccine to neutralize SARS-CoV-2 virus and new variants as they emerge.

2.
Nat Commun ; 14(1): 5990, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37752151

ABSTRACT

SARS-CoV-2 variants and seasonal coronaviruses continue to cause disease and coronaviruses in the animal reservoir pose a constant spillover threat. Importantly, understanding of how previous infection may influence future exposures, especially in the context of seasonal coronaviruses and SARS-CoV-2 variants, is still limited. Here we adopted a step-wise experimental approach to examine the primary immune response and subsequent immune recall toward antigenically distinct coronaviruses using male Syrian hamsters. Hamsters were initially inoculated with seasonal coronaviruses (HCoV-NL63, HCoV-229E, or HCoV-OC43), or SARS-CoV-2 pango B lineage virus, then challenged with SARS-CoV-2 pango B lineage virus, or SARS-CoV-2 variants Beta or Omicron. Although infection with seasonal coronaviruses offered little protection against SARS-CoV-2 challenge, HCoV-NL63-infected animals had an increase of the previously elicited HCoV-NL63-specific neutralizing antibodies during challenge with SARS-CoV-2. On the other hand, primary infection with HCoV-OC43 induced distinct T cell gene signatures. Gene expression profiling indicated interferon responses and germinal center reactions to be induced during more similar primary infection-challenge combinations while signatures of increased inflammation as well as suppression of the antiviral response were observed following antigenically distant viral challenges. This work characterizes and analyzes seasonal coronaviruses effect on SARS-CoV-2 secondary infection and the findings are important for pan-coronavirus vaccine design.


Subject(s)
COVID-19 , Coronavirus NL63, Human , Male , Animals , Cricetinae , Humans , SARS-CoV-2 , Mesocricetus , COVID-19 Vaccines , Seasons
3.
PLoS Pathog ; 18(9): e1010741, 2022 09.
Article in English | MEDLINE | ID: mdl-36070309

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) can cause the life-threatening acute respiratory disease called COVID-19 (Coronavirus Disease 2019) as well as debilitating multiorgan dysfunction that persists after the initial viral phase has resolved. Long COVID or Post-Acute Sequelae of COVID-19 (PASC) is manifested by a variety of symptoms, including fatigue, dyspnea, arthralgia, myalgia, heart palpitations, and memory issues sometimes affecting between 30% and 75% of recovering COVID-19 patients. However, little is known about the mechanisms causing Long COVID and there are no widely accepted treatments or therapeutics. After introducing the clinical aspects of acute COVID-19 and Long COVID in humans, we summarize the work in animals (mice, Syrian hamsters, ferrets, and nonhuman primates (NHPs)) to model human COVID-19. The virology, pathology, immune responses, and multiorgan involvement are explored. Additionally, any studies investigating time points longer than 14 days post infection (pi) are highlighted for insight into possible long-term disease characteristics. Finally, we discuss how the models can be leveraged for treatment evaluation, including pharmacological agents that are currently in human clinical trials for treating Long COVID. The establishment of a recognized Long COVID preclinical model representing the human condition would allow the identification of mechanisms causing disease as well as serve as a vehicle for evaluating potential therapeutics.


Subject(s)
COVID-19 , Animals , COVID-19/complications , Cricetinae , Ferrets , Humans , Mesocricetus , Mice , SARS-CoV-2 , Post-Acute COVID-19 Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL
...