Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 50(2): 651-673, 2022 01 25.
Article in English | MEDLINE | ID: mdl-34967410

ABSTRACT

Antisense sequence-specific knockdown of pathogenic RNA offers opportunities to find new solutions for therapeutic treatments. However, to gain a desired therapeutic effect, the multiple turnover catalysis is critical to inactivate many copies of emerging RNA sequences, which is difficult to achieve without sacrificing the sequence-specificity of cleavage. Here, engineering two or three catalytic peptides into the bulge-loop inducing molecular framework of antisense oligonucleotides achieved catalytic turnover of targeted RNA. Different supramolecular configurations revealed that cleavage of the RNA backbone upon sequence-specific hybridization with the catalyst accelerated with increase in the number of catalytic guanidinium groups, with almost complete demolition of target RNA in 24 h. Multiple sequence-specific cuts at different locations within and around the bulge-loop facilitated release of the catalyst for subsequent attacks of at least 10 further RNA substrate copies, such that delivery of only a few catalytic molecules could be sufficient to maintain knockdown of typical RNA copy numbers. We have developed fluorescent assay and kinetic simulation tools to characterise how the limited availability of different targets and catalysts had restrained catalytic reaction progress considerably, and to inform how to accelerate the catalytic destruction of shorter linear and larger RNAs even further.


Subject(s)
Nucleic Acid Conformation , RNA Cleavage , RNA/chemistry , Ribonucleases/chemistry , Amino Acid Sequence , Base Sequence , Biological Assay/methods , Catalysis , Kinetics , Models, Biological , Nucleic Acid Hybridization , Oligonucleotides/chemical synthesis , Oligonucleotides/chemistry , Oligonucleotides/isolation & purification , Peptides/chemical synthesis , Peptides/chemistry , Peptides/isolation & purification , Ribonucleases/metabolism , Structure-Activity Relationship
2.
Anal Chem ; 91(15): 10016-10025, 2019 08 06.
Article in English | MEDLINE | ID: mdl-31246004

ABSTRACT

DNA and RNA biomarkers have not progressed beyond the automated specialized clinic due to failure in the reproducibility necessary to standardize robust and rapid nucleic acid detection at the point of care, where health outcomes can be most improved by early-stage diagnosis and precise monitoring of therapy and disease prognosis. We demonstrate here a new analytical platform to meet this challenge using functional 3D hydrogels engineered from peptide and oligonucleotide building blocks to provide sequence-specific, PCR-free fluorescent detection of unlabeled nucleic acid sequences. We discriminated at picomolar detection limits (<7 pM) "perfect-match" from mismatched sequences, down to a single nucleotide mutation, buried within longer lengths of the target. Detailed characterization by NMR, TEM, mass spectrometry, and rheology provided the structural understanding to design these hybrid peptide-oligonucleotide biomaterials with the desired sequence sensitivity and detection limit. We discuss the generic design, which is based on a highly predictable secondary structure of the oligonucleotide components, as a platform to detect genetic abnormalities and to screen for pathogenic conditions at the level of both DNA (e.g., SNPs) and RNA (messenger, micro, and viral genomic RNA).


Subject(s)
Hydrogels/chemistry , Nucleic Acids/analysis , Polymerase Chain Reaction/methods , Base Pair Mismatch , Base Sequence , Limit of Detection , Nucleic Acid Hybridization , Oligonucleotides/chemical synthesis , Oligonucleotides/chemistry , Oligonucleotides/metabolism , Peptides/chemical synthesis , Peptides/chemistry , Peptides/metabolism
3.
Iran J Biotechnol ; 15(4): 216-223, 2017.
Article in English | MEDLINE | ID: mdl-29845073

ABSTRACT

Background: Different concentrations of the simple carbon substrates i.e. glucose, fructose, and sucrose were tested to enhance the performance of the mediator-less double chamber microbial fuel cell (MFC). Objectives: The power generation potential of the different electron donors was studied using a mesophilic Fe (III) reducer and non-fermentative bacteria Pseudomonas aeruginosa-isolated from municipal wastewater. Materials and Methods: A double chamber MFC was operated with three different electron donors including glucose, sucrose, and fructose. Substrate utilization pattern was determined through chemical oxygen demand (COD) removal rate and voltage generation. In addition, electrochemical, physicochemical, and microscopic analysis of the anodic biofilm was conducted. Results:P. aeruginosa was proven to effectively utilize hexose and pentose sugars through anode respiration. Higher power density was generated from glucose (136 ± 87 mWm2) lead by fructose (3.6 ± 1.6 mWm2) and sucrose (8.606 ± mWm2). Furthermore, a direct relation was demonstrated between current generation rate and COD removal efficiency. COD removal rates were, 88.5% ± 4.3%, 67.5% ± 2.6%, and 54.2% ± 1.9% with the three respective sugars in MFC. Scanning electron microscopy (SEM) demonstrated that the bacterial attachment was considerably abundant in glucose fed MFC than in the fructose and sucrose operated MFC. Conclusion: This study has revealed that electron donor type in the anodic compartment controls the growth of anodic biofilm or anode-respiring bacteria (ARB).

4.
Environ Technol ; 37(22): 2815-22, 2016 Nov.
Article in English | MEDLINE | ID: mdl-26984479

ABSTRACT

A microbial fuel cell (MFC) is an emerging environment-friendly technology to recover the useful energy available in waste by using microorganisms as catalyst. In this study, double chamber mediator-less MFCs separated by proton exchange membrane (PEM; Nafion) were constructed to determine the efficiency of mixed culture in using complex substrates (molasses and black liquor). It was found that activated sludge can serve as efficient source of electricigens for biofilm development on an anode. Power density of 2.425 W/m² was generated from molasses with chemical oxygen demand (COD) removal efficiency of 67% as compared to power density of 3.55 W/m² produced from black liquor along with COD removal efficiency of 78%. Moreover, it was demonstrated that surface area of PEM has a significant effect on power generation. An almost 5- to 8-fold increase in voltage was observed as the size of PEM was increased from 6.5 to 25 cm².


Subject(s)
Bioelectric Energy Sources , Molasses , Waste Disposal, Fluid/methods , Biofilms , Biological Oxygen Demand Analysis , Electricity , Industrial Waste , Sewage
SELECTION OF CITATIONS
SEARCH DETAIL
...