Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 4004, 2023 03 10.
Article in English | MEDLINE | ID: mdl-36899024

ABSTRACT

A class of proteins, 1-aminocyclopropane-1-carboxylate oxidase (ACO), is required in the final step of production of ethylene from its immediate precursor 1-aminocyclopropane-1-carboxylic acid (ACC). Despite the crucial and regulatory role of ACO gene family in the fiber development, it has not been thoroughly analyzed and annotated in G. barbadense genome. In the present study, we have identified and characterized all isoforms of ACO gene family from genomes of Gossypium arboreum, G. barbadense, G. hirsutum and G. raimondii. Phylogenetic analysis classified all ACO proteins into six distinct groups on the basis of maximum likelihood. Gene locus analysis and circos plots indicated the distribution and relationship of these genes in cotton genomes. Transcriptional profiling of ACO isoforms in G. arboreum, G. barbadense and G. hirsutum fiber development exhibited the highest expression in G. barbadense during early fiber elongation. Moreover, the accumulation of ACC was found highest in developing fibers of G. barbadense in comparison with other cotton species. ACO expression and ACC accumulation correlated with the fiber length in cotton species. Addition of ACC to the ovule cultures of G. barbadense significantly increased fiber elongation while ethylene inhibitors hindered fiber elongation. These findings will be helpful in dissecting the role of ACOs in cotton fiber development and pave a way towards genetic manipulations for fiber quality improvement.


Subject(s)
Cotton Fiber , Gossypium , Phylogeny , Gossypium/genetics , Ethylenes/metabolism , Gene Expression Regulation, Plant
2.
Front Plant Sci ; 13: 906444, 2022.
Article in English | MEDLINE | ID: mdl-35845681

ABSTRACT

Survival of living organisms depends on the availability of water resources required for agriculture. In the current scenario of limited water resources, it is our priority to maximise the yield potential of crops with a minimum supply of available water. In this study, we evaluated seven cultivated varieties of Gossypium hirsutum (FH-114, FH-152, FH-326, FH-492, FH-942, VH-327 and FH-NOOR) for their tolerance, yield potential and fibre quality under water shortages. We also studied the effect of drought stress on osmoregulation, chlorophyll content, antioxidant (peroxidase and catalase) activity, lipid peroxidation and secondary metabolite accumulation in the varieties under study. It was revealed that three varieties (FH-114, FH-152 and VH-327) exhibited a lower stress susceptibility index and more tolerance to drought stress. All the varieties demonstrated enhanced proline and malondialdehyde content, but no significant change in chlorophyll content was observed under limited water supply. Antioxidant activity offered by catalase and phenolic content was enhanced in FH-492 whilst peroxidase activity increased in FH-114 and FH-326. Phenolic content was highest in FH-942 and decreased significantly in the remaining varieties. Ginning outturn of the cotton varieties increased in VH-327 (19.8%) and FH-326 (3.7%), was not affected in FH-114 and FH-492 and was reduced in FH-152, FH-942 and FH-NOOR. All cotton varieties tested showed an increase in micronaire thickness when exposed to drought stress as early as the seedling stage. This study highlights the evaluation and screening of cotton varieties for their response to drought stress in terms of yield and fibre quality when exposed to water shortages during plant development and can help in devising irrigation plans.

SELECTION OF CITATIONS
SEARCH DETAIL
...