Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomimetics (Basel) ; 9(6)2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38921244

ABSTRACT

The need for non-interactive human recognition systems to ensure safe isolation between users and biometric equipment has been exposed by the COVID-19 pandemic. This study introduces a novel Multi-Scaled Deep Convolutional Structure for Punctilious Human Gait Authentication (MSDCS-PHGA). The proposed MSDCS-PHGA involves segmenting, preprocessing, and resizing silhouette images into three scales. Gait features are extracted from these multi-scale images using custom convolutional layers and fused to form an integrated feature set. This multi-scaled deep convolutional approach demonstrates its efficacy in gait recognition by significantly enhancing accuracy. The proposed convolutional neural network (CNN) architecture is assessed using three benchmark datasets: CASIA, OU-ISIR, and OU-MVLP. Moreover, the proposed model is evaluated against other pre-trained models using key performance metrics such as precision, accuracy, sensitivity, specificity, and training time. The results indicate that the proposed deep CNN model outperforms existing models focused on human gait. Notably, it achieves an accuracy of approximately 99.9% for both the CASIA and OU-ISIR datasets and 99.8% for the OU-MVLP dataset while maintaining a minimal training time of around 3 min.

2.
J Supercomput ; : 1-38, 2023 Mar 19.
Article in English | MEDLINE | ID: mdl-37359324

ABSTRACT

In the last decade, the need for a non-contact biometric model for recognizing candidates has increased, especially after the pandemic of COVID-19 appeared and spread worldwide. This paper presents a novel deep convolutional neural network (CNN) model that guarantees quick, safe, and precise human authentication via their poses and walking style. The concatenated fusion between the proposed CNN and a fully connected model has been formulated, utilized, and tested. The proposed CNN extracts the human features from two main sources: (1) human silhouette images according to model-free and (2) human joints, limbs, and static joint distances according to a model-based via a novel, fully connected deep-layer structure. The most commonly used dataset, CASIA gait families, has been utilized and tested. Numerous performance metrics have been evaluated to measure the system quality, including accuracy, specificity, sensitivity, false negative rate, and training time. Experimental results reveal that the proposed model can enhance recognition performance in a superior manner compared with the latest state-of-the-art studies. Moreover, the suggested system introduces a robust real-time authentication with any covariate conditions, scoring 99.8% and 99.6% accuracy in identifying casia (B) and casia (A) datasets, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...