Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Chemosphere ; 358: 142166, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38685331

ABSTRACT

The growing demand for sustainable and efficient gas separation technologies has prompted the exploration of advanced materials to enhance the gas permeability and selectivity. Polyethersulfone (PES) membranes are widely used in gas separation, gas upgrading, and clean energy production owing to their environmental friendliness and low cost. However, their gas permeability and selectivity can be further improved for commercial application. This study explored the incorporation of 10 wt % of MIL-68(ln)-NH2 into PES membranes using a phase-inversion approach to enhance gas permeability and selectivity. The morphological, structural, and thermal properties of the resulting MOF/PES membrane were characterized using SEM, AFM, BET, XRD, FTIR, and TGA-DTG. Gas permeation experiments were conducted using different gases (CO2, N2, CH4, and H2) under different heating conditions (20-60 °C) to evaluate the gas permeability and selectivity of the MOF/PES membrane. The results showed that the incorporation of MOF into the mixed matrix membrane (MMMs) led to a 9% increase in porosity, 87% reduction in roughness, and 32% decrease in pore size compared to neat PES membranes. Significant changes in the morphology, crystallinity, and thermal stability were observed, with notable improvements of up to 22%. Moreover, the MOF/PES membrane exhibited high gas permeability (CO2 = 124656, N2 = 83650, CH4 = 159298, and H2 = 427075 Barrer) and selectivity (H2/N2 = 5.7, H2/CO2 = 4, CH4/N2 = 2, and CH4/CO2 = 1.7) for flammable gases. The optimal gas separation performance was observed at 20 °C and 60 °C for H2/N2 and H2/CO2 separation, respectively. These findings demonstrate the potential of MOF-based PES membranes for gas separation applications, particularly in H2 purification.


Subject(s)
Hydrogen , Membranes, Artificial , Polymers , Hydrogen/chemistry , Polymers/chemistry , Sulfones/chemistry , Porosity , Permeability , Metal-Organic Frameworks/chemistry , Gases/chemistry , Methane/chemistry
2.
Chemosphere ; 352: 141362, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38309606

ABSTRACT

This study investigates the performance of the mixed matrix membranes (MMMs) incorporating hybrid fillers of metal-organic framework (MIL-125-NH2) and graphene nanosheets (GNs) for enhanced methane (CH4) and hydrogen (H2) separation in the purification sector. The physico-chemical properties of the MMMs were evaluated by SEM, XRD, FTIR, AFM, TGA, DTG, and Brunauer-Emmett-Teller. The permeability and selectivity of the MMMs were determined using different single gases (CO2, N2, H2, and CH4) at various temperatures (20-60 °C). Optimization of fabrication parameters resulted in a significant improvement in porosity and roughness of the fabricated MMMs. The permeabilities of the MOF/PES membrane are 20.3 (CO2), 23.9 (N2), 32.2 (CH4), and 24.1 (H2) x 104 Barrer, while incorporating 0.05 wt% of GNs into the MOF/PES membrane improved the permeability by 36 % (CO2), 41 % (N2), 31 % (CH4), and 370 % (H2). In addition, the H2/CO2 and H2/N2 selectivities of the MMMs significantly increased up to 4 and 3.3, with an improvements of 236 % and 230 %, respectively, compared to the MOF/PES membrane. Furthermore, the CH4/CO2 and CH4/N2 selectivities of the MMMs decreased by 4 %. Therefore, a hybrid filler (10 wt % of MIL-125-NH2 and 0.05 wt % of GNs is highly recommended to improve the permeability and selectivity of the PES membrane, expanding its potential applications in CH4 and H2 purification.


Subject(s)
Carbon Dioxide , Graphite , Excipients , Gases , Hydrogen
3.
Environ Res ; 245: 118016, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38154563

ABSTRACT

Recovery of carbon fibres and resin from wind turbine blade waste (WTB) composed of carbon fibres (CF)-reinforced unsaturated polyester resin (UPR) has been environmentally challenging due to its complex structure that is not biodegradable and that is rich in highly toxic styrene (main component of UPR). Within this framework, this paper aims to liberate CF and UPR from WTB using a pyrolysis process. The treatment was performed on commercial WTB (CF/UPR) up to 600 °C using a 250 g reactor. The UPR fraction was decomposed into liquid and gaseous phases, while CF remained as a residue. The composition of gaseous phase was monitored during the entire treatment using a digital gas analyser, while gas chromatography-mass spectrometry (GC-MS) was used to characterize the collected liquid phase. CF fraction was collected and exposed to additional oxidation process after treatment at 450 °C for purification propose, then it was analysed using FTIR and SEM-EDX. Finally, the life cycle assessment (LCA) of the CF/UPR pyrolysis was studied using SimaPro software and the results were compared with landfill disposal practices. The pyrolysis results manifested that 500 °C was sufficient for UPR decomposition into styrene-rich oil and gaseous products with yields of 15.23 wt% and 6.83 wt%, respectively, accompanied by 77.93 wt% solid residue including CF. The LCA results showed that pyrolysis with oxidation process has high environmental potential in WTB recycling with significant reduction in several impact categories compared to landfill. However, the pyrolysis scenario revealed several additional environmental burdens related to ecosystems, acidification, Ozone formation, and fine particulate matter formation that must be overcome before upscaling.


Subject(s)
Ecosystem , Pyrolysis , Carbon Fiber , Polyesters , Styrene , Carbon
4.
Materials (Basel) ; 16(18)2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37763357

ABSTRACT

This research aims to maximize polyethylene terephthalate (PET) nonwoven fabric waste and make it as a new source for benzoic acid extraction using a pyrolysis process. The treatment was performed using a thermogravimetric analyzer (TGA) and released products were characterized using FTIR spectroscopy and gas chromatography-mass spectrometry (GC-MS). The pyrolysis kinetic and thermodynamic behavior of PET fabric was also studied and simulated using different linear and nonlinear models. The results show that the PET fabric is very rich in volatile matter (80 wt.%) and can completely degrade under 490 °C with a weight loss of 84%. Meanwhile, the generated vapor was rich in the carbonylic C=O functional group (FTIR), and the GC-MS analysis concluded that benzoic acid was the major compound with an abundance of 75% that was achieved at the lowest heating rate (5 °C/min). The linear kinetic results showed that PET samples had an activation energy in the ranges of 193-256 kJ/mol (linear models) and ~161 kJ/mol (nonlinear models). The thermodynamic parameters, including enthalpy, Gibbs free energy, and entropy, were estimated in the ranges of 149-250 kJ/mol, 153-232 kJ/mol, and 256-356 J/mol K, respectively. Accordingly, pyrolysis treatment can be used to extract benzoic acid from PET fabric waste with a 134% increase in the benzoic acid abundance that can be recovered from PET bottle plastic waste.

5.
Sci Total Environ ; 844: 157150, 2022 Oct 20.
Article in English | MEDLINE | ID: mdl-35803432

ABSTRACT

This research aims to study the effect of aluminum (Al) leaching pre-treatment on the catalytic pyrolysis of metallised food packaging plastics waste (MFPW). The experiments started with removal of Al from MFPW using leaching process to prepare Al-free mixed plastic waste (MPW). The catalytic pyrolysis of MPW over ZSM-5 zeolite catalyst was carried out using thermogravimetric (TG) analysis coupled with FTIR, while GC-MS was used to observe the compounds of the volatile products. The catalytic pyrolysis kinetic behaviour of MPW was studied using the linear and nonlinear isoconversional approaches. The elemental and proximate results showed that MPW is very rich in carbon elements (79 %) and volatile content (99 %). The TG results showed that MPW and ZSM/MPW were fully decomposed in the range of 376-496 °C without any presence of char. Based on TG-FTIR analysis, methane and carboxylic acid residue were the main groups of the synthesized volatile products, whereas nitrous oxide, 1-Butanol, 1-Propene, acetic acid, and formic acid were the major GC compounds. In case of ZSM/MPW, carbon dioxide and acetic acid were the major GC compounds at 5-25 °C/min, triphenylphosphine oxide and Phosphine oxide at 30 °C/min. The kinetic analysis showed that when the activation energies are located in the range 287-297 kJ/mol (MPW) and 153-187 kJ/mol (ZSM/MPW) and KAS, Vyazovkin, and Cai methods are the most suitable models to study pyrolysis kinetic of MPW with R2 > 89. Based on that, leaching and catalytic pyrolysis processes are a highly suggested technology that can be used to convert MFPW into high-added energy and chemical products.


Subject(s)
Plastics , Pyrolysis , Aluminum , Catalysis , Food Packaging , Kinetics , Plastics/chemistry
6.
Polymers (Basel) ; 13(10)2021 May 11.
Article in English | MEDLINE | ID: mdl-34064980

ABSTRACT

Due to the increasing demand for glass fibre-reinforced epoxy resin composites (GFRC), huge amounts of GFRC waste are produced annually in different sizes and shapes, which may affect its thermal and chemical decomposition using pyrolysis technology. In this context, this research aims to study the effect of mechanical pre-treatment on the pyrolysis behaviour of GFRC and its pyrolysis kinetic. The experiments were started with the fabrication of GFRC panels using the vacuum-assisted resin transfer method followed by crushing the prepared panels using ball milling, thus preparing the milled GFRC with uniform shape and size. The elemental, proximate, and morphology properties of the panels and milled GFRC were studied. The thermal and chemical decomposition of the milled GFRC was studied using thermogravimetric coupled with Fourier-transform infrared spectroscopy (TG-FTIR) at different heating rates. Meanwhile, the volatile products were examined using TG coupled with gas chromatography-mass spectrometry (GC-MS). The TG-FTIR and TG-GC-MS experiments were performed separately. Linear (Kissinger-Akahira-Sunose (KAS), Flynn-Wall-Ozawa (FWO), and Friedman) and nonlinear (Vyazovkin and Cai) isoconversional methods were used to determine the pyrolysis kinetic of the milled GFRC based on thermogravimetry and differential thermal gravimetry (TG/DTG). In addition, the TG/DTG data of the milled GFRC were fitting using the distributed activation energy model and the independent parallel reactions kinetic model. The TG results showed that GFRC can decompose in three stages, and the main decomposition is located in the range 256-500 °C. On the other hand, aromatic benzene and a C-H bond were the major functional groups in the released volatile components in FTIR spectra, while phenol (27%), phenol,4-(1-methylethyl) (40%), and p-isopropenylphenol (34%) were the major compounds in GC-MS analysis. Whereas, the kinetic results showed that both isoconversional methods can be used to determine activation energies, which were estimated 165 KJ/mol (KAS), 193 KJ/mol (FWO), 180 KJ/mol (Friedman), 177 KJ/mol (Vyazovkin), and 174 KJ/mol (Cai).

7.
J Anal Appl Pyrolysis ; 156: 105118, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33875899

ABSTRACT

In the times of Covid-19, face masks are considered to be the main source of protection against the virus that reduces its spread. These masks are classified as single-use medical products with a very short service life, estimated at few days, hence millions of contaminated masks are generated daily in the form of hazardous materials, what requires to develop a safe method to dispose of them, especially since some of them are loaded with viruses. 3-ply face masks (3PFM) represent the major fraction of this waste and are composed mainly from polypropylene and melt blown filter with high content of volatile substances (96.6 wt.%), what makes pyrolysis treatment an emerging technology that could be used to dispose of face masks and convert them into energy products. In this context, this work aims to study pyrolysis kinetic behaviour and TG-FTIR-GC-MS analysis of 3PFM. The research started with analysis of 3PFM using elemental analysis, proximate analysis, and compositional analyses. Afterwards, TG-FTIR system was used to study the thermal and chemical decomposition of 3PFM analyzed at different heating rates: 5, 10, 15, 20, 25, and 30 °C/min. The GC/MS system was used to observe the synthesized volatile products at the maximum decomposition temperatures. After that, isoconversional methods, the advanced nonlinear integral isoconversional method, and the iterative linear integral isoconversional method were used to determine the activation energies of mask pyrolysis, while the distributed activation energy model and the independent parallel reactions kinetic model were used to fit TGA and DTG curves with deviations below <1. The TGA-DTG results showed that 3PFM can decompose in three different periods with a total weight loss of 95 % and maximum decomposition in the range 405-510 °C, while the FTIR spectra and GC-MS analysis exhibited that - C-H (aromatic and aliphatic) and 2,4-Dimethyl-1-heptene (28-43 % based on heating rate) represented the major compounds in the released volatile components. Finally, Vyazovkin and the iterative linear integral isoconversional methods gave activation energies almost similar to that obtained by the KAS isoconversional method.

8.
Polymers (Basel) ; 13(5)2021 Feb 26.
Article in English | MEDLINE | ID: mdl-33652610

ABSTRACT

Recently, the pyrolysis process has been adapted as a sustainable strategy to convert metallized food packaging plastics waste (MFPW) into energy products (paraffin wax, biogas, and carbon black particles) and to recover aluminum. Usually, catalysts are used in pyrolysis treatment to refine pyrolysis products and to increase their yield. In order to study the effect of a catalyst on the formulated volatile products, this work aims to study the pyrolysis behavior of MFPW in presence of catalyst, using TG-FTIR-GC-MS system. The pyrolysis experiments were conducted with ZSM-5 Zeolite catalyst with different concentrations (10, 30, and 50 wt.%) at different heating rates (5, 10, 15, 20, 25, and 30 °C/min). In addition, TG-FTIR system and GC-MS unit were used to observe and analyze the thermal and chemical degradation of the obtained volatile compounds at maximum decomposition peaks. In addition, the kinetic results of catalytic pyrolysis of ZSM-5/MFPW samples matched when model-free methods, a distributed activation energy model (DAEM), and an independent parallel reaction kinetic model (IPR) were used. The TGA-DTG results showed that addition of a catalyst did not have a significant effect on the features of the TGA-DTG curves with similar weight loss of 87-90 wt.% (without taking the weight of the catalyst into account). Meanwhile, FTIR results manifested strong presence of methane and high-intensity functional group of carboxylic acid residues, especially at high concentration of ZSM-5 and high heating rates. Likewise, GC-MS measurements showed that Benzene, Toluene, Hexane, p-Xylene, etc. compounds (main flammable liquid compounds in petroleum oil) generated catalysts exceeding 50%. Finally, pyrolysis kinetics showed that the whole activation energies of catalytic pyrolysis process of MFPW were estimated at 289 kJ/mol and 110, 350, and 174 kJ/mol for ZSM-5/MFPW samples (10, 30, and 50 wt.%, respectively), whereas DAEM and IPR approaches succeeded to simulate TGA and DTG profiles with deviations below <1.

9.
Waste Manag ; 123: 23-32, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33549877

ABSTRACT

Usually, Euro banknotes are made from cotton substrates and their waste is disposed of in landfill or is incinerated. In order to valorize the end-of-life euro banknotes (ELEBs), the substrates were used in this research for cellulase production via submerged fungal fermentation (SFF), and the resultant fungal cellulase w s used in ELEBs hydrolysis process for extraction of glucose. The experiments were started by exposing the ELEBs to different types of pretreatments, including milling process, alkali (NaOH/urea solution), and acid leaching to remove any contamination (e.g. dyes) and to decrease the crystallinity of cellulose (the main element in cotton substrate) thus increasing the degradation rate during the fermentation process. The effect of pretreatments on the morphology and chemical composition of ELEBs was observed using Scanning Electron Microscope and Energy Dispersive Spectrometry. Afterwards, Trichoderma reesei-DSM76 was used for cellulase production from the treated ELEBs with high cellulase activity (12.97 FPU/g). The resultant cellulase was upscaled in a bioreactor and used in ELEBs hydrolysis. Finally, the results showed that the optimized pretreatment methods (milling followed by leaching process) significantly improved the cellulase activity and glucose recovery, which was estimated by 96%. According to the obtained results, the developed strategy has a great potential for conversion of ELEBs into a glucose product that could be used in biofuels and bioplastics applications.


Subject(s)
Cellulase , Trichoderma , Cellulose/metabolism , Fermentation , Glucose , Hydrolysis , Hypocreales , Trichoderma/metabolism
10.
Sci Total Environ ; 762: 143107, 2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33129549

ABSTRACT

Lint-microfibers (LMs) generated during clothes drying are classified as primary microplastics and consist mainly of cotton, polyester and lignin. This research aims to convert LMFs into energy products using a pyrolysis treatment. The pyrolysis experiments were performed using a pilot pyrolysis plant. SEM-EDS was used to observe the morphology and elemental composition of the feedstock and the obtained biochar, while a digital unit of Instantaneous Gas analyzer and Gas chromatography (GC) were used to observe the concentration of O2, N2, CO2, CO, H2, CH4 gases during the whole conversion process. Finally, a simple mathematical model was developed to evaluate the economic and environmental performance of the suggested strategy based on the LMFs generated by one million persons. Based on the results of the developed model and yield of pyrolysis process, around 45 tons of LMFs are generated by one million persons annually and this amount is enough to produce 13.8 tons of oil (~31%), 21.5 tons of gas (47.7%), and 9.7 ton of char (21.6%) with estimated profitability of 120,400$ and reduction in carbon footprint estimated at -42,039,000kg CO2-eq/t of LMFs.

11.
Polymers (Basel) ; 12(8)2020 Aug 06.
Article in English | MEDLINE | ID: mdl-32781759

ABSTRACT

Recently, a pyrolysis process has been adapted as an emerging technology to convert metalized food packaging plastics waste (MFPWs) into energy products with a high economic benefit. In order to upscale this technology, the knowledge of the pyrolysis kinetic of MFPWs is needed and studying these parameters using free methods is not sufficient to describe the last stages of pyrolysis. For a better understanding of MFPWs pyrolysis kinetics, independent parallel reactions (IPR) kinetic model and its modification model (MIPR) were used in the present research to describe the kinetic parameters of MFPWs pyrolysis at different heating rates (5-30 °C min-1). The IPR and MIPR models were built according to thermogravimetric (TG)-Fourier-transform infrared spectroscopy (FTIR)-gas chromatography-mass spectrometry (GC-MS) results of three different types of MFPWs (coffee, chips, and chocolate) and their mixture. The accuracy of the developed kinetic models was evaluated by comparing the conformity of the DTG experimental results to the data calculated using IPR and MIPR models. The results showed that the dependence of the pre-exponential factor on the heating rate (as in the case of MIPR model) led to better conformity results with high predictability of kinetic parameters with an average deviation of 2.35% (with an improvement of 73%, when compared to the IPR model). Additionally, the values of activation energy and pre-exponential factor were calculated using the MIPR model and estimated at 294 kJ mol-1 and 5.77 × 1017 kJ mol-1 (for the mixed MFPW sample), respectively. Finally, GC-MS results illustrated that pentane (13.8%) and 2,4-dimethyl-1-heptene isopropylcyclobutane (44.31%) represent the main compounds in the released volatile products at the maximum decomposition temperature.

12.
Polymers (Basel) ; 12(4)2020 Apr 05.
Article in English | MEDLINE | ID: mdl-32260569

ABSTRACT

Polyether block amide (PEBA) nanocomposite membranes, including Graphene (GA)/PEBA membranes are considered to be a promising emerging technology for removing CO2 from natural gas and biogas. However, poor dispersion of GA in the produced membranes at industrial scale still forms the main barrier to commercialize. Within this frame, this research aims to develop a new industrial approach to produce GA/PEBA granules that could be used as a feedstock material for mass production of GA/PEBA membranes. The developed approach consists of three sequential phases. The first stage was concentrated on production of GA/PEBA granules using extrusion process (at 170-210 °C, depending on GA concentration) in the presence of Paraffin Liquid (PL) as an adhesive layer (between GA and PEBA) and assisted melting of PEBA. The second phase was devoted to production of GA/PEBA membranes using a solution casting method. The last phase was focused on evaluation of CO2/CH4 selectivity of the fabricated membranes at low and high temperatures (25 and 55 °C) at a constant feeding pressure (2 bar) using a test rig built especially for that purpose. The granules and membranes were prepared with different concentrations of GA in the range 0.05 to 0.5 wt.% and constant amount of PL (2 wt.%). Also, the morphology, physical, chemical, thermal, and mechanical behaviors of the synthesized membranes were analyzed with the help of SEM, TEM, XRD, FTIR, TGA-DTG, and universal testing machine. The results showed that incorporation of GA with PEBA using the developed approach resulted in significant improvements in dispersion, thermal, and mechanical properties (higher elasticity increased by ~10%). Also, ideal CO2/CH4 selectivity was improved by 29% at 25 °C and 32% at 55 °C.

13.
Waste Manag ; 98: 126-134, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31445457

ABSTRACT

Solar cell industry produces high quantities of waste in form of broken, damaged, and rejected cells, whereas milling and filtering practices are typically used to recover the valuable materials (Al, Ag and Si) from such Waste Solar Cell Wafers (WSCWs). This recycling approach has its disadvantages, e.g. excessive energy consumption and dust emission causing loss of valuable metals. To fulfil the concept of Zero Waste for WSCWs, the authors present a sustainable technology for liberation of valuable metals from WSCWs and synthesis of added value products, in particular Ag nanoparticles and Al microparticles. The suggested technology consisted of three different approaches combined to liberate each material individually. The technology started with an Al layer disintegration process using Dimethyl Sulfoxide (as an eco-friendly and sustainable solvent) supported by ultrasonic treatment to break van der Waals' bonding between spherical Al microparticles that compose the Al paste layer, thus liberating Al in microparticle suspension form with particle size ∼3 µm, recovery rate >98%. After that, leaching by nitric acid and other eco-friendly reagents (Sodium Chloride, Ammonia solution and glucose syrup) assisted by ultrasonic treatment was used to dissolve Ag and later precipitate it in form of nanoparticles with avg. size 30 nm, yield >92%. Finally, etching using paste containing phosphoric acid was done to remove anti-reflection coating and purify the Si substrate with final recovery rate >99%. SEM-EDS, XRD, FTIR, and TEM were used for analysis of extracted materials as well as changes in the solvent. Investigation was also concerned with determining economic/global warming impacts of the technology.


Subject(s)
Electronic Waste , Metal Nanoparticles , Recycling , Silver , Technology
14.
Waste Manag ; 78: 521-531, 2018 Aug.
Article in English | MEDLINE | ID: mdl-32559941

ABSTRACT

Waste Printed Circuit Boards (WPCBs) were classified as one of the most important resources for urban mining containing high purity Copper (Cu) and other valuable materials. Recently, a dissolution recycling approach enhanced by ultrasonic treatment succeeded in the liberation of Cu foils from WPCBs as received. This research aims to synthesize Copper Nanoparticles (Cu-NPs) from the recovered Cu by using an advanced chemistry approach to obtain nano-product with high added value taking into consideration environmental risks. The experiments were carried out on the Cu foils recovered from the three types of WPCBs with different purity of Cu (Motherboard, Video Card, and Random Access Memory (RAM)). The synthesis process was performed in two stages: (a) preparation of Copper (II) Sulfate aqueous solutions from the recovered Cu and (b) chemical reduction of solutions for synthesis of Cu-NPs by using Native Cyclodextrins (NCDs), particularly ß-NCD as stabilizers. The efficiency of the developed approach for raw material of different purity was assessed and the final yield and the estimated recovery cost of synthesized Cu-NPs were calculated with high accuracy as well as the properties of the synthesized Cu-NPs. The obtained Cu-NPs were examined using SEM-EDS, TEM, XRD, Raman Spectroscopy, and TGA. To maximize the potential biomedical application benefits, the antibacterial activity of Cu-NPs was investigated by the standard microdilution method for E. coli, P. aeruginosa, and S. aureus bacterial cultures. The results showed that the produced Cu-NPs had an average size of 7 nm and yield 90%, while the preparation costs were 6 times lower in comparison to the commercial counterparts. In addition, the results indicated that the synthesized Cu-NPs from RAM sample had a good antimicrobial action.

15.
Polymers (Basel) ; 10(11)2018 Nov 21.
Article in English | MEDLINE | ID: mdl-30961216

ABSTRACT

Ultra High molecular weight polyethylene (UHMWPE) suffers wear degradation in total joint replacements and it needs to be improved. Thus, we enhanced wear resistance of UHMWPE with carbon nanofiller and paraffin oil and studied its tribological behavior in Simulated Synovial Fluid (SSF) for 60 days at 37 °C to reproduce the conditions of a real joint. Ageing in biological fluid accelerates the wear action but nanocomposite exhibited a higher wear resistance compared to UHMWPE because of its higher structural homogeneity. Carbon nanofiller closes the porosity of UHMWPE hindering SSF to penetrate inside. Wear resistance of the nanocomposite with 1.0 wt.% of CNF improved of 65% (before ageing) and of 70% (after 60 days in SSF) with respect to pure UHMWPE.

16.
Mater Sci Eng C Mater Biol Appl ; 73: 234-244, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-28183604

ABSTRACT

The majority of artificial joints incorporate biomedical grade Ultra High Molecular Weight Poly Ethylene (UHMWPE), whose wear is considered most important in controlling service time of the whole joint. The aim of this work was to improve wear resistance of UHMWPE through the addition of 0.5-2.0wt% of Carbon Nano Filler (CNF) and 2% wt of Paraffin Oil (PO) using ball milling (BM) and extrusion techniques (EX). The wear tests on these nanocomposites were conducted by a pin on disc in dry (air) and wet media (simulated synovial fluid or artificial lubricant, and bovine synovial fluid or natural lubricant). Mechanical tests (tensile and hardness), physical analysis (calorimetric, density, wet ability, roughness) and morphological observations were also performed. The experimental results showed that natural lubricant provides the greatest reduction in wear rate while the largest one occurred in air. Furthermore, the BM mixed nanocomposites with a filler load of 1.0% exhibited the best wear resistance among all the samples with an improvement of 42%, 64% and 83% in air, artificial and natural lubricant, respectively. This is due to its higher ductility and thermal features, and lower wet ability in the two lubricants.


Subject(s)
Arthroplasty, Replacement , Carbon/chemistry , Nanoparticles/chemistry , Oils/pharmacology , Paraffin/pharmacology , Polyethylenes/chemistry , Animals , Cattle , Hardness , Lubricants/pharmacology , Microscopy, Electron , Nanocomposites/chemistry , Optical Imaging , Stress, Mechanical , Surface Properties , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...