Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Biomater Adv ; 159: 213823, 2024 May.
Article in English | MEDLINE | ID: mdl-38460353

ABSTRACT

Lung cancer, one of the most common causes of high mortality worldwide, still lacks appropriate and convenient treatment options. Photodynamic therapy (PDT) has shown promising results against cancer, especially in recent years. However, pulmonary drug delivery of the predominantly hydrophobic photosensitizers still represents a significant obstacle. Nebulizing DPPC/Cholesterol liposomes loaded with the photosensitizer curcumin via a vibrating mesh nebulizer might overcome current restrictions. In this study, the liposomes were prepared by conventional thin-film hydration and two other methods based on dual centrifugation. The liposomes' physicochemical properties were determined before and after nebulization, showing that liposomes do not undergo any changes. However, morphological characterization of the differently prepared liposomes revealed structural differences between the methods in terms of lamellarity. Internalization of curcumin in lung adenocarcinoma (A549) cells was visualized and quantified. The generation of reactive oxygen species because of the photoreaction was also proven. The photodynamic efficacy of the liposomal formulations was tested against A549 cells. They revealed different phototoxic responses at different radiant exposures. Furthermore, the photodynamic efficacy was investigated after nebulizing curcumin-loaded liposomes onto xenografted tumors on the CAM, followed by irradiation, and evaluated using positron emission tomography/computed tomography and histological analysis. A decrease in tumor metabolism could be observed. Based on the efficacy of curcumin-loaded liposomes in 2D and 3D models, liposomes, especially with prior film formation, can be considered a promising approach for PDT against lung cancer.


Subject(s)
Curcumin , Lung Neoplasms , Humans , Liposomes/therapeutic use , Curcumin/pharmacology , Curcumin/therapeutic use , Drug Delivery Systems , Nebulizers and Vaporizers , Photosensitizing Agents/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology
2.
Eur J Pharm Sci ; 196: 106748, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38471594

ABSTRACT

Lung cancer is one of the most common causes of high mortality worldwide. Current treatment strategies, e.g., surgery, radiotherapy, chemotherapy, and immunotherapy, insufficiently affect the overall outcome. In this study, we used curcumin as a natural photosensitizer in photodynamic therapy and encapsulated it in liposomes consisting of stabilizing tetraether lipids aiming for a pulmonary drug delivery system against lung cancer. The liposomes with either hydrolyzed glycerol-dialkyl-glycerol tetraether (hGDGT) in different ratios or hydrolyzed glycerol-dialkyl-nonitol tetraether (hGDNT) were prepared by dual centrifugation (DC), an innovative method for liposome preparation. The liposomes' physicochemical characteristics before and after nebulization and other nebulization characteristics confirmed their suitability. Morphological characterization using atomic force and transmission electron microscopy showed proper vesicular structures indicative of liposomes. Qualitative and quantitative uptake of the curcumin-loaded liposomes in lung adenocarcinoma (A549) cells was visualized and proven. Phototoxic effects of the liposomes were detected on A549 cells, showing decreased cell viability. The generation of reactive oxygen species required for PDT and disruption of mitochondrial membrane potential were confirmed. Moreover, the chorioallantoic membrane (CAM) model was used to further evaluate biocompatibility and photodynamic efficacy in a 3D cell culture context. Photodynamic efficacy was assessed by PET/CT after nebulization of the liposomes onto the xenografted tumors on the CAM with subsequent irradiation. The physicochemical properties and the efficacy of tetraether lipid liposomes encapsulating curcumin, especially liposomes containing hGDNT, in 2D and 3D cell cultures seem promising for future PDT usage against lung cancer.

3.
ACS Appl Bio Mater ; 6(12): 5502-5514, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38016693

ABSTRACT

Natural photosensitizers, such as curcumin or parietin, play a vital role in photodynamic therapy (PDT), causing a light-mediated reaction that kills cancer cells. PDT is a promising treatment option for glioblastoma, especially when combined with nanoscale drug delivery systems. The curcumin- or parietin-loaded lipid nanoparticles were prepared via dual asymmetric centrifugation and subsequently characterized through physicochemical analyses including dynamic light scattering, laser Doppler velocimetry, and atomic force microscopy. The combination of PDT and lipid nanoparticles has been evaluated in vitro regarding uptake, safety, and efficacy. The extensive and well-vascularized chorioallantois membrane (CAM) of fertilized hen's eggs offers an optimal platform for three-dimensional cell culture, which has been used in this study to evaluate the photodynamic efficacy of lipid nanoparticles against glioblastoma cells. In contrast to other animal models, the CAM model lacks a mature immune system in an early stage, facilitating the growth of xenografts without rejection. Treatment of xenografted U87 glioblastoma cells on CAM was performed to assess the effects on tumor viability, growth, and angiogenesis. The xenografts and the surrounding blood vessels were targeted through topical application, and the effects of photodynamic therapy have been confirmed microscopically and via positron emission tomography and X-ray computed tomography. Finally, the excised xenografts embedded in the CAM were analyzed histologically by hematoxylin and eosin and KI67 staining.


Subject(s)
Curcumin , Glioblastoma , Photochemotherapy , Humans , Animals , Female , Photochemotherapy/methods , Glioblastoma/drug therapy , Glioblastoma/pathology , Curcumin/pharmacology , Curcumin/therapeutic use , Chickens , Cell Line, Tumor
4.
Int J Pharm ; 643: 123217, 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37429562

ABSTRACT

The application of photodynamic therapy has become more and more important in combating cancer. However, the high lipophilic nature of most photosensitizers limits their parenteral administration and leads to aggregation in the biological environment. To resolve this problem and deliver a photoactive form, the natural photosensitizer parietin (PTN) was encapsulated in poly(lactic-co-glycolic acid) nanoparticles (PTN NPs) by emulsification diffusion method. PTN NPs displayed a size of 193.70 nm and 157.31 nm, characterized by dynamic light scattering and atomic force microscopy, respectively. As the photoactivity of parietin is essential for therapy, the quantum yield of PTN NPs and the in vitro release were assessed. The antiproliferative activity, the intracellular generation of reactive oxygen species, mitochondrial potential depolarization, and lysosomal membrane permeabilization were evaluated in triple-negative breast cancer cells (MDA-MB-231 cells). At the same time, confocal laser scanning microscopy (CLSM) and flow cytometry were used to investigate the cellular uptake profile. In addition, the chorioallantoic membrane (CAM) was employed to evaluate the antiangiogenic effect microscopically. The spherical monomodal PTN NPs show a quantum yield of 0.4. The biological assessment on MDA-MB-231 cells revealed that free PTN and PTN NPs inhibited cell proliferation with IC50 of 0.95 µM and 1.9 µM at 6 J/cm2, respectively, and this can be attributed to the intracellular uptake profile as proved by flow cytometry. Eventually, the CAM study illustrated that PTN NPs could reduce the number of angiogenic blood vessels and disrupt the vitality of xenografted tumors. In conclusion, PTN NPs are a promising anticancer strategy in vitro and might be a tool for fighting cancer in vivo.


Subject(s)
Emodin , Nanoparticles , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Drug Carriers , Photosensitizing Agents/pharmacology , Cell Line, Tumor
5.
ACS Appl Bio Mater ; 6(6): 2435-2445, 2023 06 19.
Article in English | MEDLINE | ID: mdl-37222633

ABSTRACT

The chorioallantoic membrane (CAM) of fertilized hen's eggs represents a unique and alternative model for cancer research. The CAM model provides an optimal platform for xenografting cancer cell lines and studying essential key factors. Tumor size and growth as well as angiogenesis can be investigated to evaluate the response of therapies and strategies against cancer. Preclinical imaging represented by magnetic resonance imaging and positron emission tomography/computed tomography can generate detailed anatomical and functional information and reveal excellent metabolic sensitivity. In the following, a guideline is introduced in order to find a simplified entrance to the CAM model in combination with modern preclinical imaging techniques. Finally, the presented procedures are additionally completed by histological studies in the form of hematoxylin and eosin as well as immunohistochemical staining.


Subject(s)
Chorioallantoic Membrane , Neoplasms , Humans , Animals , Female , Chorioallantoic Membrane/metabolism , Positron Emission Tomography Computed Tomography , Chickens , Heterografts , Transplantation, Heterologous , Magnetic Resonance Imaging , Cell Line, Tumor , Neoplasms/metabolism
6.
Biomedicines ; 11(4)2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37189670

ABSTRACT

BACKGROUND: The timing of imaging for 68gallium (68Ga)-PSMA and 68Ga-DOTATOC are stated to be around 60 min post-injection (p.i.). In some lesions, late imaging (3-4 h p.i.) showed advantages. The aim of our evaluation was to demonstrate the relevance of an "early" late acquisition. METHODS: We retrospectively evaluated 112 patients who underwent 68Ga-DOTATOC-PET/CT and 82 patients who underwent 68Ga-PSMA-PET/CT. The first scan was acquired 60 min (±15 min) after application. In cases of diagnostic ambiguity, a second scan was performed 30-60 min later. Pathological lesions were analyzed. RESULTS: Almost half of all 68Ga-DOTATOC cases and about one-third of all 68Ga-PSMA examinations showed a change in findings due to the second acquisition. In total, 45.5% of neuroendocrine tumor (NET) patients and 66.7% of prostate cancer (PCa) patients showed relevant TNM classification changes. For 68Ga-PSMA, there were significant increases in sensitivity and specificity from 81.8% to 95.7% and from 66.7% to 100%, respectively. Statistically significant improvements in sensitivity (from 53.3% to 93.3%) and specificity (from 54.6% to 86.4%) were demonstrated for NET patients. CONCLUSION: Early second images can improve diagnostics with 68Ga-DOTATOC and 68Ga-PSMA PET/CT.

7.
J Nucl Med ; 62(4): 479-485, 2021 04.
Article in English | MEDLINE | ID: mdl-32859709

ABSTRACT

Pheochromocytomas and paragangliomas are a rare tumor entity originating from adrenomedullary chromaffin cells in the adrenal medulla or in sympathetic, paravertebral ganglia outside the medulla. Small lesions are especially difficult to detect by conventional CT or MRI and even by SPECT with the currently available radiotracers (e.g., metaiodobenzylguanidine [MIBG]). The novel PET radiotracer 18F-flubrobenguane could change the diagnostic paradigm in suspected pheochromocytomas and paragangliomas because of its homology with MIBG and the general advantages of PET imaging. The aim of this retrospective analysis was to evaluate 18F-flubrobenguane in pheochromocytomas and paragangliomas and to investigate the biodistribution in patients. Methods: Twenty-three patients with suspected pheochromocytoma or paraganglioma underwent PET/CT or PET/MRI at 63 ± 24 min after injection of 256 ± 33 MBq of 18F-flubrobenguane. The SUVmean and SUVmax of organs were measured with spheric volumes of interest. Threshold-segmented volumes of interest were used to measure the SUVmean or SUVmax of the tumor lesions. One reader evaluated all cross-sectional imaging datasets (CT or MRI) separately, as well as the PET hybrid datasets, and reported the lesion number and size. The diagnostic certainty for a positive lesion was scored on a 3-point scale. Results:18F-flubrobenguane showed a reproducible, stable biodistribution, with the highest SUVmax and SUVmean being in the thyroid gland (30.3 ± 2.2 and 22.5 ± 1.6, respectively), pancreas (12.2 ± 0.8 and 9.5 ± 0.7, respectively), and tumor lesions (16.8 ± 1.7 and 10.1 ± 1.1, respectively) and the lowest SUVmax and SUVmean being in muscle (1.1 ± 0.06 and 0.7 ± 0.04, respectively) and the lung (2.5 ± 0.17 and 1.85 ± 0.13, respectively). In a subgroup analysis, a significantly higher average SUVmean was seen for both pheochromocytoma and paraganglioma than for healthy adrenal glands (11.9 ± 2.0 vs. 9.9 ± 1.5 vs. 3.7 ± 0.2, respectively). In total, 47 lesions were detected. The reader reported more and smaller lesions with higher certainty in PET hybrid imaging than in conventional imaging; however, statistical significance was not reached. Of the 23 (23/47, 49%) lesions smaller than 1 cm, 61% (14/23) were found on hybrid imaging only. Conclusion: Our preliminary data suggest 18F-flubrobenguane PET to be a new, effective staging tool for patients with suspected pheochromocytoma or paraganglioma. Major advantages are the fast acquisition and high spatial resolution of PET imaging and the intense uptake in tumor lesions, facilitating detection. Further studies are warranted to define the role of 18F-flubrobenguane PET, particularly in comparison to standard diagnostic procedures such as MRI or 123I-MIBG SPECT/CT.


Subject(s)
Adrenal Gland Neoplasms/diagnostic imaging , Fluorine Radioisotopes , Fluorobenzenes , Guanidines , Paraganglioma/diagnostic imaging , Pheochromocytoma/diagnostic imaging , Positron Emission Tomography Computed Tomography , Adult , Aged , Female , Humans , Male , Middle Aged , Retrospective Studies
8.
Front Aging Neurosci ; 10: 174, 2018.
Article in English | MEDLINE | ID: mdl-29930508

ABSTRACT

Positron-emission-tomography (PET) imaging of tau pathology has facilitated development of anti-tau therapies. While members of the arylquinoline and pyridoindole families have been the most frequently used tau radioligands so far, analyses of their comparative performance in vivo are scantly documented. Here, we conducted a head-to-head PET comparison of the arylquinoline 18FT807 and the pyridoindole 18FTHK5117 PET in a mouse model of tau pathology. PET recordings were obtained in groups of (N = 5-7) P301S and wild-type (WT) mice at 6 and 9 months of age. Volume-of-interest based analysis (standard-uptake-value ratio, SUVR) was used to calculate effect sizes (Cohen's d) for each tracer and age. Statistical parametric mapping (SPM) was used to assess regional similarity (dice coefficient) of tracer binding alterations for the two tracers. Immunohistochemistry staining of neurofibrillary tangles was performed for validation ex vivo. Significantly elevated 18F-T807 binding in the brainstem of P301S mice was already evident at 6 months (+14%, p < 0.01, d = 1.64), and increased further at 9 months (+23%, p < 0.001, d = 2.70). 18F-THK5117 indicated weaker increases and effect sizes at 6 months (+5%, p < 0.05, d = 1.07) and 9 months (+10%, p < 0.001, d = 1.49). Regional similarity of binding of the two tracers was high (71%) at 9 months. 18F-T807 was more sensitive than 18F-THK5117 to tau pathology in this model, although both tracers present certain obstacles, which need to be considered in the design of longitudinal preclinical tau imaging studies.

9.
Endocr Relat Cancer ; 24(1): 1-15, 2017 01.
Article in English | MEDLINE | ID: mdl-27811202

ABSTRACT

Pheochromocytomas (PCCs) are mostly benign tumors, amenable to complete surgical resection. However, 10-17% of cases can become malignant, and once metastasized, there is no curative treatment for this disease. Given the need to identify the effective therapeutic approaches for PCC, we evaluated the antitumor potential of the dual-PI3K/mTOR inhibitor BEZ235 against these tumors. We employed an in vivo model of endogenous PCCs (MENX mutant rats), which closely recapitulate the human tumors. Mutant rats with PCCs were treated with 2 doses of BEZ235 (20 and 30 mg/kg), or with placebo, for 2 weeks. Treatment with BEZ235 induced cytostatic and cytotoxic effects on rat PCCs, which could be appreciated by both staining the tumors ex vivo with appropriate markers and non-invasively by functional imaging (diffusion-weighted magnetic resonance imaging) in vivo Transcriptomic analyses of tumors from rats treated with BEZ235 or placebo-identified potential mediators of therapy response were performed. Slc6a2, encoding the norepinephrine transporter (NET), was downregulated in a dose-dependent manner by BEZ235 in rat PCCs. Moreover, BEZ235 reduced Slc6a2/NET expression in PCC cell lines (MPC) also. Studies of a BEZ235-resistant derivative of the MPC cell line confirmed that the reduction of NET expression associates with the response to the drug. Reduction of NET expression after BEZ235 treatment in vivo could be monitored by positron emission tomography (PET) using a tracer targeting NET. Altogether, here we demonstrate the efficacy of BEZ235 against PCC in vivo, and show that functional imaging can be employed to monitor the response of PCC to PI3K/mTOR inhibition therapy.


Subject(s)
Adrenal Gland Neoplasms/drug therapy , Antineoplastic Agents/therapeutic use , Imidazoles/therapeutic use , Pheochromocytoma/drug therapy , Phosphoinositide-3 Kinase Inhibitors , Quinolines/therapeutic use , TOR Serine-Threonine Kinases/antagonists & inhibitors , Adrenal Gland Neoplasms/genetics , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Imidazoles/pharmacology , Norepinephrine Plasma Membrane Transport Proteins/genetics , Pheochromocytoma/genetics , Quinolines/pharmacology , Rats, Mutant Strains , Rats, Sprague-Dawley , Signal Transduction
10.
J Nucl Med ; 57(3): 410-5, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26585059

ABSTRACT

UNLABELLED: The network degeneration hypothesis (NDH) of neurodegenerative syndromes suggests that pathologic brain changes distribute primarily along distinct brain networks, which are characteristic for different syndromes. Brain changes of neurodegenerative syndromes can be characterized in vivo by different imaging modalities. Our aim was to test the hypothesis whether multimodal imaging based on the NDH separates individual patients with different neurodegenerative syndromes. METHODS: Twenty patients with Alzheimer disease (AD) and 20 patients with frontotemporal lobar degeneration (behavioral variant frontotemporal dementia [bvFTD, n = 11], semantic dementia [SD, n = 4], or progressive nonfluent aphasia [PNFA, n = 5]) underwent simultaneous MRI and (18)F-FDG PET in a hybrid PET/MR scanner. The 3 outcome measures were voxelwise values of degree centrality as a surrogate for regional functional connectivity, glucose metabolism as a surrogate for regional metabolism, and volumetric-based morphometry as a surrogate for regional gray matter volume. Outcome measures were derived from predefined core regions of 4 intrinsic networks based on the NDH, which have been demonstrated to be characteristic for AD, bvFTD, SD, and PNFA, respectively. Subsequently, we applied support vector machine to classify individual patients via combined imaging measures, and results were evaluated by leave-one-out cross-validation. RESULTS: On the basis of multimodal voxelwise regional patterns, classification accuracies for separating patients with different neurodegenerative syndromes were 77.5% for AD versus others, 82.5% for bvFTD versus others, 97.5% for SD versus others, and 87.5% for PNFA versus others. Multimodal classification results were significantly superior to unimodal approaches. CONCLUSION: Our finding provides initial evidence that the combination of regional metabolism, functional connectivity, and gray matter volume, which were derived from disease characteristic networks, separates individual patients with different neurodegenerative syndromes. Preliminary results suggest that employing multimodal imaging guided by the NDH may generate promising biomarkers of neurodegenerative syndromes.


Subject(s)
Nerve Net/diagnostic imaging , Neurodegenerative Diseases/diagnosis , Aged , Aged, 80 and over , Alzheimer Disease/diagnosis , Alzheimer Disease/diagnostic imaging , Aphasia, Broca/diagnosis , Aphasia, Broca/diagnostic imaging , Diagnosis, Differential , Female , Fluorodeoxyglucose F18 , Frontotemporal Lobar Degeneration/diagnosis , Frontotemporal Lobar Degeneration/diagnostic imaging , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Multimodal Imaging , Neurodegenerative Diseases/diagnostic imaging , Positron-Emission Tomography , Predictive Value of Tests , Radiopharmaceuticals , Reproducibility of Results
11.
EJNMMI Res ; 5: 20, 2015.
Article in English | MEDLINE | ID: mdl-25918674

ABSTRACT

BACKGROUND: Over the last decade, an increasing number of studies have been published on the use of amyloid-ß (Aß) PET imaging with different (18)F-radiopharmaceuticals for clinical characterization of Alzheimer's disease (AD) in different stages. However, distinct study cohorts and different quantification techniques allow only for an indirect comparison between the different tracers. Thus, the aim of this study was the direct intra-individual in vivo comparison of different Aß-targeted radiopharmaceuticals for PET imaging, including the newly developed agent [(18)F]FIBT. METHODS: A small group of four animals of a well-characterized APP/PS1 transgenic (tg) mouse model of AD and gender-matched control (ctl) animals underwent a sequential and standardized PET imaging regimen for direct comparison of [(18)F]FIBT, [(18)F]florbetaben, and [(11)C]PiB. The quantitative PET imaging data were cross-validated with the cerebral Aß plaque load as quantified ex vivo on histological sections. RESULTS: We found that FIBT (2-(p-methylaminophenyl)-7-(2-[(18)F]fluoroethoxy)imidazo[2,1-b]benzothiazole) compares favorably to florbetaben as a high-contrasting PET radiopharmaceutical for imaging Aß pathology. The excellent pharmacokinetics of FIBT in combination with its high-binding affinity towards Aß resulted in feasible high-contrast imaging of Aß with high global cortex to cerebellum standard uptake value ratio (SUVR) in 24-month-old tg mice (tg 1.68 ± 0.15 vs. ctl 0.95 ± 0.02). The SUVRs in transgenic versus control animals (SUVRtg/SUVRctl) for FIBT (1.78 ± 0.16) were similar to the ratios as observed in humans (SUVRAD/SUVRctl) for the established gold standard Pittsburgh compound B (PiB) (1.65 ± 0.41). CONCLUSIONS: This head-to-head PET tracer comparison study in mice indicated the good imaging properties of [(18)F]FIBT, such as high initial brain uptake, fast clearance of the brain, and high binding affinity towards Aß as directly compared to the established amyloid tracers. Moreover, the preclinical study design is recommendable for reliable assessment and comparison of novel radiopharmaceuticals.

13.
J Nucl Med ; 56(3): 399-404, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25678488

ABSTRACT

UNLABELLED: In PET studies of patients with Alzheimer disease (AD), prominent hypometabolism can occur in brain regions without major amyloid load. These hypometabolism-only (HO) areas may not be explained easily as a consequence of local amyloid toxicity. The aim of this longitudinal multimodal imaging study was the investigation of locoregional and remote relationships between metabolism in HO areas and longitudinal amyloid increase in functionally connected brain areas, with a particular focus on intrinsic functional connectivity as a relevant linking mechanism between pathology and dysfunction. METHODS: Fifteen AD patients underwent longitudinal examinations with (11)C-Pittsburgh compound B ((11)C-PiB) and (18)F-FDG PET (mean follow-up period, 2 y). The peak HO region was identified by the subtraction of equally thresholded statistical T maps (hypometabolism minus amyloid burden), resulting from voxel-based statistical parametric mapping group comparisons between the AD patients and 15 healthy controls. Then functionally connected and nonconnected brain networks were identified by means of seed-based intrinsic functional connectivity analysis of the resting-state functional MRI data of healthy controls. Finally, network-based, region-of-interest-based, and voxel-based correlations were calculated between longitudinal changes of normalized (11)C-PiB binding and (18)F-FDG metabolism. RESULTS: Positive voxel-based and region-of-interest-based correlations were demonstrated between longitudinal (11)C-PiB increases in the HO-connected network, encompassing bilateral temporoparietal and frontal brain regions, and metabolic changes in the peak HO region as well as locoregionally within several AD-typical brain regions. CONCLUSION: Our results indicate that in AD amyloid accumulation in remote but functionally connected brain regions may significantly contribute to longitudinally evolving hypometabolism in brain regions not strongly affected by local amyloid pathology, supporting the amyloid- and network-degeneration hypothesis.


Subject(s)
Alzheimer Disease/diagnostic imaging , Amyloid/metabolism , Brain/diagnostic imaging , Aged , Brain/pathology , Carbon Radioisotopes/chemistry , Case-Control Studies , Female , Fluorodeoxyglucose F18/chemistry , Humans , Longitudinal Studies , Magnetic Resonance Imaging , Male , Middle Aged , Multimodal Imaging , Positron-Emission Tomography , Prefrontal Cortex/diagnostic imaging , Radiopharmaceuticals
14.
Biol Psychiatry ; 77(8): 704-10, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-24613195

ABSTRACT

BACKGROUND: There is controversy concerning whether Alzheimer's disease (AD) with early onset is distinct from AD with late onset with regard to amyloid pathology and neuronal metabolic deficit. We hypothesized that compared with patients with early-onset AD, patients with late-onset AD have more comorbid small vessel disease (SVD) contributing to clinical severity, whereas there are no differences in amyloid pathology and neuronal metabolic deficit. METHODS: The study included two groups of patients with probable AD dementia with evidence of the AD pathophysiologic process: 24 patients with age at onset <60 years old and 36 patients with age at onset >70 years old. Amyloid deposition was assessed using carbon-11-labeled Pittsburgh compound B positron emission tomography, comorbid SVD was assessed using magnetic resonance imaging, and neuronal metabolic deficit was assessed using fluorodeoxyglucose positron emission tomography. Group differences of global and regional distribution of pathology were explored using region of interest and voxel-based analyses, respectively, carefully controlling for the influence of dementia severity, apolipoprotein E genotype, and in particular SVD. The pattern of cognitive impairment was determined using z scores of the subtests of the Consortium to Establish a Registry for Alzheimer's Disease Neuropsychological Assessment Battery. RESULTS: Patients with late-onset AD showed a significantly greater amount of SVD. No statistically significant differences in global or regional amyloid deposition or neuronal metabolic deficit between the two groups were revealed. However, when not controlling for SVD, subtle differences in fluorodeoxyglucose uptake between early-onset AD and late-onset AD groups were detectable. There were no significant differences regarding cognitive functioning. CONCLUSIONS: Age at onset does not influence amyloid deposition or neuronal metabolic deficit in AD. The greater extent of SVD in late-onset AD influences the association between neuronal metabolic deficit and clinical symptoms.


Subject(s)
Age of Onset , Alzheimer Disease/complications , Alzheimer Disease/metabolism , Amyloid/metabolism , Vascular Diseases/etiology , Aged , Aged, 80 and over , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Aniline Compounds , Apolipoproteins E/genetics , Benzothiazoles/pharmacokinetics , Brain/diagnostic imaging , Brain/pathology , Female , Fluorodeoxyglucose F18/pharmacokinetics , Humans , Male , Metabolic Diseases/diagnostic imaging , Metabolic Diseases/etiology , Middle Aged , Radionuclide Imaging , Thiazoles , Vascular Diseases/diagnostic imaging
15.
Brain Connect ; 4(5): 371-83, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24870443

ABSTRACT

In patients with Alzheimer's disease (AD), prominent hypometabolism has been observed in brain regions with minor amyloid load. These hypometabolism-only (HO) areas cannot be explained merely as a consequence of local amyloid toxicity. The aim of this multimodal imaging study was to explore whether such HO phenomenon may be related to pathologies in functionally connected, remote brain regions. Nineteen AD patients and 15 matched controls underwent examinations with [(11)C]PiB-PET and [(18)F]FDG-PET. Voxel-based statistical group comparisons were performed to obtain maps of significantly elevated amyloid burden and reduced cerebral glucose metabolism, respectively, in patients. An HO area was identified by subtraction of equally thresholded result maps (hypometabolism minus amyloid burden). To identify the network typically functionally connected to this HO area, it was used as a seed region for a functional connectivity analysis in resting-state functional magnetic resonance imaging data of 17 elderly healthy controls. The resulting intrinsic connectivity network (HO-ICN) was retransferred into the brains of AD patients to be able to analyze pathologies within this network in the positron emission tomography (PET) datasets. The most prominent HO area was detected in the left middle frontal gyrus of AD patients. The HO-ICN in healthy controls showed a major overlap with brain areas significantly affected by both amyloid deposition and hypometabolism in patients. This association was substantiated by the results of region-of-interest-based and voxel-wise correlation analyses, which revealed strong correlations between the degree of hypometabolism within the HO region and within the HO-ICN. These results support the notion that hypometabolism in brain regions not strongly affected by locoregional amyloid pathology may be related to ongoing pathologies in remote but functionally connected regions, that is, by reduced neuronal input from these regions.


Subject(s)
Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid/metabolism , Brain/metabolism , Brain/pathology , Aged , Alzheimer Disease/diagnostic imaging , Aniline Compounds , Brain/diagnostic imaging , Carbon Radioisotopes , Case-Control Studies , Female , Fluorodeoxyglucose F18 , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Positron-Emission Tomography/methods , Radiopharmaceuticals , Thiazoles
16.
Neuroimage Clin ; 4: 411-6, 2014.
Article in English | MEDLINE | ID: mdl-24596678

ABSTRACT

OBJECTIVE: Impaired amyloid clearance has been proposed to contribute to ß-amyloid deposition in sporadic late-onset Alzheimer's disease (AD). Low density lipoprotein receptor-related protein 1 (LRP-1) is involved in the active outward transport of ß-amyloid across the blood-brain barrier (BBB). The C667T polymorphism (rs1799986) of the LRP-1 gene has been inconsistently associated with AD in genetic studies. We aimed to elucidate the association of this polymorphism with in-vivo brain amyloid load of AD patients using amyloid PET with [(11)C]PiB. MATERIALS AND METHODS: 72 patients with very mild to moderate AD were examined with amyloid PET and C667T polymorphism was obtained using TaqMan PCR assays. The association of C667T polymorphism with global and regional amyloid load was calculated using linear regression and voxel based analysis, respectively. The effect of the previously identified modulator of amyloid uptake, the apolipoprotein E genotype, on this association was also determined. RESULTS: The regression analysis between amyloid load and C667T polymorphism was statistically significant (p = 0.046, ß = 0.236). In an additional analysis ApoE genotype and gender were identified to explain further variability of amyloid load. Voxel based analysis revealed a significant (p < 0.05) association between C667T polymorphism and amyloid uptake in the temporo-parietal cortex bilaterally. ApoE did not interact significantly with the LRP-1 polymorphism. DISCUSSION: In conclusion, C667T polymorphism of LRP-1 is moderately but significantly associated with global and regional amyloid deposition in AD. The relationship appears to be independent of the ApoE genotype. This finding is compatible with the hypothesis that impaired amyloid clearance contributes to amyloid deposition in late-onset sporadic AD.


Subject(s)
Alzheimer Disease/physiopathology , Amyloidogenic Proteins/metabolism , Brain/physiopathology , Genetic Predisposition to Disease/genetics , Low Density Lipoprotein Receptor-Related Protein-1/genetics , Polymorphism, Single Nucleotide/genetics , Aged , Aged, 80 and over , Alzheimer Disease/diagnostic imaging , Aniline Compounds , Benzothiazoles/pharmacokinetics , Brain/diagnostic imaging , Female , Humans , Male , Middle Aged , Positron-Emission Tomography/methods , Radiopharmaceuticals/pharmacokinetics , Reproducibility of Results , Sensitivity and Specificity , Thiazoles , Tissue Distribution
17.
J Nucl Med ; 54(12): 2111-7, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24136933

ABSTRACT

UNLABELLED: We evaluated (18)F-LMI1195 (1-(3-bromo-4-(3-(18)F-fluoro-propoxy)benzyl)guanidine), a metaiodobenzylguanidine (MIBG) analog, for the detection of pheochromocytoma in a preclinical in vivo model of endogenous neuroendocrine tumors (multiple endocrine neoplasia [MENX]). METHODS: Adrenal uptake kinetics of (18)F-LMI1195 were evaluated in healthy Wistar rats (n = 6) by dynamic PET imaging. Distribution of (18)F-LMI1195 was evaluated in tumor-bearing MENX mut/mut rats (n = 10) and control MENX wild-type rats (n = 4) by biodistribution studies and PET imaging. Biodistribution of (18)F-LMI1195 was compared with (123)I-MIBG in MENX mut/mut rats (n = 6) and correlated with histological tumor volume and norepinephrine transporter (NET) expression. Uptake specificity was evaluated by in vivo inhibition of the NET by desipramine (n = 6). Intraadrenal distribution of (18)F-LMI1195 was evaluated by autoradiography. RESULTS: (18)F-LMI1195 showed rapid tracer accumulation in adrenal glands 1 min after tracer injection. Adrenal glands of MENX mut/mut animals showed significantly higher standardized uptake value than MENX wild-type controls (maximum SUV, 10.3 ± 2.3 vs. 6.1 ± 0.9, P < 0.01). Adrenal uptake in MENX mut/mut rats could be inhibited by desipramine, shown by biodistribution studies (0.06 ± 0.01 vs. 0.16 ± 0.05 percentage injected dose, P < 0.01), PET imaging (maximum SUV, 3.8 ± 0.8 vs. 10.3 ± 2.3, P < 0.01), and autoradiography. Adrenal uptake of (18)F-LMI1195 correlated with (123)I-MIBG uptake (r = 0.91), histological tumor volume (r = 0.68), and NET expression (r = 0.50). (18)F-LMI1195 showed an overall favorable distribution for tumor imaging. CONCLUSION: (18)F-LMI1195 shows high and specific accumulation in pheochromocytomas. Its favorable biodistribution makes it a promising PET tracer for tumor imaging. Further studies are warranted to evaluate its clinical value in oncologic indications.


Subject(s)
Adrenal Gland Neoplasms/diagnostic imaging , Fluorine Radioisotopes , Fluorobenzenes , Guanidines , Multiple Endocrine Neoplasia , Pheochromocytoma/diagnostic imaging , Positron-Emission Tomography , Adrenal Gland Neoplasms/genetics , Adrenal Gland Neoplasms/pathology , Animals , Autoradiography , Disease Models, Animal , Feasibility Studies , Fluorobenzenes/pharmacokinetics , Gene Expression Regulation, Neoplastic , Guanidines/pharmacokinetics , Mutation , Norepinephrine Plasma Membrane Transport Proteins/genetics , Organ Size , Pheochromocytoma/genetics , Pheochromocytoma/pathology , Rats , Tumor Burden
18.
J Nucl Med ; 54(7): 1142-6, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23670901

ABSTRACT

UNLABELLED: A novel (18)F-labeled tracer, LMI1195 (N-[3-bromo-4-(3-(18)F-fluoro-propoxy)-benzyl]-guanidine), is being developed for sympathetic nerve imaging; its high specificity for neural uptake-1 mechanism has previously been demonstrated in cell associative studies and in rabbit and nonhuman primate studies assessing heart uptake. The aim of this study was to investigate the mechanisms of (18)F-LMI1195 cardiac uptake in the rat, which is known to contain norepinephrine uptake mechanisms beyond uptake-1. METHODS: Tracer accumulation in the heart was studied over time after intravenous administration of (18)F-LMI1195 in healthy male Wistar rats by quantitative in vivo PET imaging. The uptake mechanism was assessed by pretreatment with the nonselective norepinephrine uptake-1 and norepinephrine uptake-2 inhibitor phenoxybenzamine (50 mg/kg intravenously; n = 4), the selective norepinephrine uptake-1 inhibitor desipramine (2 mg/kg intravenously; n = 4), or saline control (intravenously; n = 4). RESULTS: (18)F-LMI1195 produced high and sustained heart uptake allowing clear delineation of the left ventricular wall over 60 min after tracer administration. Pretreatment with phenoxybenzamine markedly reduced the (18)F-LMI1195 cardiac uptake when compared with controls. In contrast, there was preserved (18)F-LMI1195 uptake after desipramine pretreatment. CONCLUSION: In rats, cardiac uptake of (18)F-LMI1195 was significantly inhibited by phenoxybenzamine but not desipramine, suggesting (18)F-LMI1195 is a substrate for the uptake-2 mechanism and is consistent with the rat heart having a dominant level of the mechanism.


Subject(s)
Heart/diagnostic imaging , Molecular Imaging/methods , Myocardium/metabolism , Norepinephrine/metabolism , Positron-Emission Tomography/methods , Animals , Fluorine Radioisotopes/pharmacokinetics , Fluorobenzenes , Guanidines , Male , Metabolic Clearance Rate , Radiopharmaceuticals/pharmacokinetics , Rats , Rats, Wistar , Reproducibility of Results , Sensitivity and Specificity , Tissue Distribution
19.
Mol Imaging Biol ; 15(5): 576-84, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23572425

ABSTRACT

PURPOSE: The purpose of this study is to validate the feasibility of a voxel-based analysis of in vivo amyloid-ß positron emission tomography (PET) imaging studies in transgenic mouse models of Alzheimer's disease. PROCEDURES: We performed [(11)C]PiB PET imaging in 20 APP/PS1 mice and 16 age-matched controls, and histologically determined the individual amyloid-ß plaque load. Using SPM software, we performed a voxel-based group comparison plus a regression analysis between PiB retention and actual plaque load, both thresholded at p FWE < 0.05. In addition, we carried out an individual ROI analysis in every animal. RESULTS: The automated voxel-based group comparison allowed us to identify voxels with significantly increased PiB retention in the cortical and hippocampal regions in transgenic animals compared to controls. The voxel-based regression analysis revealed a significant association between this signal increase and the actual cerebral plaque load. The validity of these results was corroborated by the individual ROI-based analysis. CONCLUSIONS: Voxel-based analysis of in vivo amyloid-ß PET imaging studies in mouse models of Alzheimer's disease is feasible and allows studying the PiB retention patterns in whole brain maps. Furthermore, the selected approach in our study also allowed us to establish a quantitative relation between tracer retention and actual plaque pathology in the brain in a voxel-wise manner.


Subject(s)
Alzheimer Disease/diagnostic imaging , Amyloid/metabolism , Benzothiazoles , Positron-Emission Tomography , Alzheimer Disease/pathology , Aniline Compounds , Animals , Carbon Radioisotopes , Disease Models, Animal , Female , Male , Mice , Mice, Transgenic , Plaque, Amyloid/diagnostic imaging , Plaque, Amyloid/pathology , Regression Analysis , Signal Processing, Computer-Assisted , Thiazoles
20.
Eur J Nucl Med Mol Imaging ; 39(12): 1927-36, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22926714

ABSTRACT

PURPOSE: Similar regional anatomical distributions were reported for fibrillary amyloid deposition [measured by (11)C-Pittsburgh compound B (PIB) positron emission tomography (PET)] and brain hypometabolism [measured by (18)F-fluorodeoxyglucose (FDG) PET] in numerous Alzheimer's disease (AD) studies. However, there is a lack of longitudinal studies evaluating the interrelationships of these two different pathological markers in the same AD population. Our most recent AD study suggested that the longitudinal pattern of hypometabolism anatomically follows the pattern of amyloid deposition with temporal delay, which indicates that neuronal dysfunction may spread within the anatomical pattern of amyloid pathology. Based on this finding we now hypothesize that in early AD patients quantitative longitudinal decline in hypometabolism may be related to the amount of baseline amyloid deposition during a follow-up period of 2 years. METHODS: Fifteen patients with mild probable AD underwent baseline (T1) and follow-up (T2) examination after 24 ± 2.1 months with [(18)F]FDG PET, [(11)C]PIB PET, structural T1-weighted MRI and neuropsychological testing [Consortium to Establish a Registry for Alzheimer's Disease (CERAD) neuropsychological battery]. Longitudinal cognitive measures and quantitative PET measures of amyloid deposition and metabolism [standardized uptake value ratios (SUVRs)] were obtained using volume of interest (VOI)-based approaches in the frontal-lateral-retrosplenial (FLR) network and in predefined bihemispheric brain regions after partial volume effect (PVE) correction of PET data. Statistical group comparisons (SUVRs and cognitive measures) between patients and 15 well-matched elderly controls who had undergone identical imaging procedures once as well as Pearson's correlation analyses within patients were performed. RESULTS: Group comparison revealed significant cognitive decline and increased mean PIB/decreased FDG SUVRs in the FLR network as well as in several AD-typical regions in patients relative to controls. Concurrent with cognitive decline patients showed longitudinal increase in mean PIB/decrease in mean FDG SUVRs over time in the FLR network and in several AD-typical brain regions. Correlation analyses of FLR network SUVRs in patients revealed significant positive correlations between PIB T1 and delta FDG (FDG T1-T2) SUVRs, between PIB T1 and PIB T2 SUVRs, between FDG T1 and PIB T2 SUVRs as well as between FDG T1 and FDG T2 SUVRs, while significant negative correlations were found between FDG T1 and delta PIB (PIB T1-T2) SUVRs as well as between FDG T2 and delta FDG (FDG T1-T2) SUVRs. These findings were confirmed in locoregional correlation analyses, revealing significant associations in the same directions for two left hemispheric regions and nine right hemispheric regions, showing the strongest association for bilateral precuneus. CONCLUSION: Baseline amyloid deposition in patients with mild probable AD was associated with longitudinal metabolic decline. Additionally, mildly decreased/relatively preserved baseline metabolism was associated with a longitudinal increase in amyloid deposition. The latter bidirectional associations were present in the whole AD-typical FLR network and in several highly interconnected hub regions (i.e. in the precuneus). Our longitudinal findings point to a bidirectional quantitative interrelationship of the two investigated AD pathologies, comprising an initial relative maintenance of neuronal activity in already amyloid-positive hub regions (neuronal compensation), followed by accelerated amyloid deposition, accompanied by functional neuronal decline (neuronal breakdown) along with cognitive decline.


Subject(s)
Alzheimer Disease/diagnostic imaging , Amyloid/metabolism , Brain/metabolism , Aged , Alzheimer Disease/metabolism , Aniline Compounds , Brain/diagnostic imaging , Case-Control Studies , Female , Fluorodeoxyglucose F18 , Follow-Up Studies , Humans , Longitudinal Studies , Magnetic Resonance Imaging , Male , Middle Aged , Positron-Emission Tomography , Radiopharmaceuticals , Thiazoles
SELECTION OF CITATIONS
SEARCH DETAIL
...