Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Toxicol Chem ; 42(12): 2599-2613, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37750569

ABSTRACT

The Swat and Kabul rivers of northern Pakistan are within an important regional watershed that supports river-based livelihoods and is impacted by untreated effluent discharges and municipal solid waste. Evidence indicates that fish populations are decreasing in these rivers. One potential cause of poor aquatic health is pollution; therefore, we investigated the presence of contaminants of emerging concern (CECs) in the river systems. Water samples were collected in the Kabul River (n = 9) and Swat River (n = 10) during seasons of high (summer 2018) and low (winter 2019) river flow. Agrochemicals, pharmaceuticals, plasticizers, chemicals in personal care products, and hormones were quantified via liquid chromatography high-resolution mass spectrometry. In the Swat River, caffeine (18-8452 ng/L), N,N-diethyl-meta-toluamide (DEET; 16-56 ng/L), and plasticizers (13-7379 ng/L) were detected at all sites during both seasons, while butachlor (16-98 ng/L) was detected only during high flow. In the Kabul River, caffeine (12-2081 ng/L) and several plasticizers (91-722 ng/L) were detected at all sites during both seasons, while DEET (up to 97 ng/L) was detected only during high flow. During low flow, pharmaceuticals (analgesics and nonsteroidal anti-inflammatory drugs) were quantified in both rivers (up to 823 ng/L), with detection frequencies from 70% to 100% and 0% to 78% in the Swat and Kabul Rivers, respectively. Intermittent-use and natural seasonal processes (increased runoff and dilution from rainfall and snowmelt) yielded higher agrochemical concentrations and lower concentrations of continuous-use compounds (e.g., caffeine) during high flow. The present study provides the first insight into CEC concentrations in the Swat River, additional insight into the Kabul River stressors, and, overall, contaminant risks to aquatic life. Environ Toxicol Chem 2023;42:2599-2613. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Environmental Monitoring , Water Pollutants, Chemical , Animals , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , DEET , Rivers/chemistry , Caffeine , Pakistan , Plasticizers/analysis , Pharmaceutical Preparations
2.
Nat Commun ; 14(1): 3687, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37344473

ABSTRACT

Controlling optical fields on the subwavelength scale is at the core of nanophotonics. Laser-driven nanophotonic particle accelerators promise a compact alternative to conventional radiofrequency-based accelerators. Efficient electron acceleration in nanophotonic devices critically depends on achieving nanometer control of the internal optical nearfield. However, these nearfields have so far been inaccessible due to the complexity of the devices and their geometrical constraints, hampering the design of future nanophotonic accelerators. Here we image the field distribution inside a nanophotonic accelerator, for which we developed a technique for frequency-tunable deep-subwavelength resolution of nearfields based on photon-induced nearfield electron-microscopy. Our experiments, complemented by 3D simulations, unveil surprising deviations in two leading nanophotonic accelerator designs, showing complex field distributions related to intricate 3D features in the device and its fabrication tolerances. We envision an extension of our method for full 3D field tomography, which is key for the future design of highly efficient nanophotonic devices.

3.
Materials (Basel) ; 15(13)2022 Jul 03.
Article in English | MEDLINE | ID: mdl-35806794

ABSTRACT

Ultra-short laser (USL)-induced surface structuring combined with nanoparticles synthesis by multiphoton photoreduction represents a novel single-step approach for commercially pure titanium (cp-Ti) surface enhancement. Such a combination leads to the formation of distinct topographical features covered by nanoparticles. The USL processing of cp-Ti in an aqueous solution of silver nitrate (AgNO3) induces the formation of micron-sized spikes surmounted by silver nanoparticles (AgNPs). The proposed approach combines the structuring and oxidation of the Ti surface and the synthesis of AgNPs in a one-step process, without the use of additional chemicals or a complex apparatus. Such a process is easy to implement, versatile and sustainable compared to alternative methodologies capable of obtaining comparable results. Antimicrobial surfaces on medical devices (e.g., surgical tools or implants), for which titanium is widely used, can be realized due to the simultaneous presence of AgNPs and micro/nano-structured surface topography. The processed surfaces were examined by means of a scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM) and Raman spectroscopy. The surface morphology and the oxidation, quality and quantity of AgNPs were analyzed in relation to process parameters (laser scanning speed and AgNO3 concentration), as well as the effect of AgNPs on the Raman signal of Titanium oxide.

4.
Sci Total Environ ; 811: 152347, 2022 Mar 10.
Article in English | MEDLINE | ID: mdl-34921888

ABSTRACT

Understanding of how anthropogenic droughts occur in socio-hydrological systems is critical in studying resilience of these systems. This is especially relevant when a "lock-in" toward watershed desiccation occurs as an emergent outcome of coupling among social dynamics and surface and underground water processes. How the various processes collectively fit together to reinforce such a lock-in and what may be a critical or ignored feedback worsening the state of the socio-hydrological systems remains poorly understood. Here we tackle this gap by focusing on the case of Lake Urmia in Iran, a saline lake that faces the same fate as that of Aral Sea due to over-extraction of water sources that feed the lake. We develop an integrative, system-level understanding of how various anthropogenic, surface and underground environmental processes collectively generate the water scarcity and soil salinization issues in the study case. To this end, we investigate a paradoxical phenomenon wherein the increase of soil salinity has not noticeably affected the level of vegetation cover in Lake Urmia Basin. The outcome of our analysis may provide useful insights for informing policymakers how to cope with drought and water scarcity issues in many fragile saline lakes around the world that are currently under threat by overexploitation.


Subject(s)
Groundwater , Lakes , Desiccation , Droughts , Environmental Monitoring , Hydrology
5.
Science ; 373(6561): eabj7128, 2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34446445

ABSTRACT

The interaction between free electrons and light stands at the base of both classical and quantum physics, with applications in free-electron acceleration, radiation sources, and electron microscopy. Yet to this day, all experiments involving free-electron­light interactions are fully explained by describing the light as a classical wave. We observed quantum statistics effects of photons on free-electron­light interactions. We demonstrate interactions that pass continuously from Poissonian to super-Poissonian and up to thermal statistics, revealing a transition from quantum walk to classical random walk on the free-electron energy ladder. The electron walker serves as the probe in nondestructive quantum detection, measuring the second-order photon-correlation g(2)(0) and higher-orders g(n)(0). Unlike conventional quantum-optical detectors, the electron can perform both quantum weak measurements and projective measurements by evolving into an entangled joint state with the photons. These findings inspire hitherto inaccessible concepts in quantum optics, including free-electron­based ultrafast quantum tomography of light.

6.
Opt Lett ; 44(6): 1520-1523, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30874691

ABSTRACT

We report on the efficacy of a novel design for dielectric laser accelerators by adding a distributed Bragg reflector (DBR) to a dual pillar grating accelerating structure. This mimics a double-sided laser illumination, resulting in an enhanced longitudinal electric field while reducing the deflecting transverse effects when compared to single-sided illumination. We improve the coupling efficiency of the incident electric field into the accelerating mode by 57%. The 12 µm long structures accelerate sub-relativistic 28 keV electrons with gradients of up to 200 MeV/m in theory and 133 MeV/m in practice. This Letter shows how lithographically produced nano-structures help to make novel laser accelerators more efficient.

7.
Phys Rev Lett ; 123(26): 264803, 2019 Dec 31.
Article in English | MEDLINE | ID: mdl-31951447

ABSTRACT

Dielectric laser acceleration is a versatile scheme to accelerate and control electrons with the help of femtosecond laser pulses in nanophotonic structures. We demonstrate here the generation of a train of electron pulses with individual pulse durations as short as 270±80 attoseconds (FWHM), measured in an indirect fashion, based on two subsequent dielectric laser interaction regions connected by a free-space electron drift section, all on a single photonic chip. In the first interaction region (the modulator), an energy modulation is imprinted on the electron pulse. During free propagation, this energy modulation evolves into a charge density modulation, which we probe in the second interaction region (the analyzer). These results will lead to new ways of probing ultrafast dynamics in matter and are essential for future laser-based particle accelerators on a photonic chip.

8.
J Phys Chem Lett ; 6(19): 3988-93, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26722904

ABSTRACT

Attenuated total reflectance (ATR) and X-ray photoelectron spectroscopy in suite with Kelvin probe were conjugated to explore the electronic properties of Si-Hx vibrational modes by developing Si waveguide with large dynamic detection range compared with conventional IR. The Si 2p emission and work-function related to the formation and elimination of Si-Hx bonds at Si surfaces are monitored based on the detection of vibrational mode frequencies. A transition between various Si-Hx bonds and thus related vibrational modes is monitored for which effective momentum transfer could be demonstrated. The combination of the aforementioned methods provides for results that permit a model for the kinetics of hydrogen termination of Si surfaces with time and advanced surface characterizing of hybrid-terminated semiconducting solids.


Subject(s)
Electrons , Hydrogen/chemistry , Silicon/chemistry , Photoelectron Spectroscopy , Vibration
SELECTION OF CITATIONS
SEARCH DETAIL
...