Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Robot ; 8(84): eadk5632, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37992193

ABSTRACT

One of the winning teams of the EU AI Act Grand Challenge analyzes how the AI Act will regulate robots.

2.
Mar Environ Res ; 188: 105989, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37127005

ABSTRACT

Microalgae have been discovered as an environmental-friendly and cost-effective solution for heavy metal treatment issues. This study illustrated the bioremediation of two heavy metals (e.g. copper and iron) and nutrients (e.g. nitrate and phosphate) uptake by freshwater microalgae Chlorella vulgaris (C. vulgaris) and Scendesmus obliquus (S. obliquus), and their 50-50% mix culture under the suspension and biofilm conditions. After one week of culture in 1L Erlenmeyer flasks, under the Organization for Economic Co-operation and Development (OECD) guideline, various concentrations of copper and iron were added to the culture bioreactors and their concentrations changes were studied. The results obtained showed that C. vulgaris, S. obliquus, and mix culture removed 98.25-99.9%, 98.75-99.1%, and 98.61-99.9% of copper and 90.22-94.05%, 85.68-99.19%, and 91.67-97.85% of iron, respectively. The results suggested that copper has more toxicity effects than iron. C. vulgaris showed to be the most vulnerable among cultures. S. obliquus showed to be more resistant to copper and iron stress situations. Mix culture showed better efficiency in iron uptake. It also demonstrated that there is a limit to nitrate uptake. Increasing heavy metal concentrations may increase nutrient uptake as long as it doesn't reach a toxic amount. Also, biofilm structure showed an effective role in heavy metal resistance.


Subject(s)
Chlorella vulgaris , Metals, Heavy , Microalgae , Copper/toxicity , Copper/chemistry , Nitrates , Iron , Phosphates , Metals, Heavy/toxicity , Nutrients , Biofilms
3.
Clin Psychopharmacol Neurosci ; 18(2): 241-248, 2020 May 31.
Article in English | MEDLINE | ID: mdl-32329305

ABSTRACT

OBJECTIVE: Alzheimer's disease is a popular neurodegenerative disorder which is growing in the elderly people. Exposure to environmental pollutant like aluminum could trigger or accelerate its involved mechanisms like tau phosphorylation. The current study will evaluate the effect of alone or co-administration of Citicoline or/and magnesium on the aluminum chloride induced memory impairment. METHODS: Male albino mice were randomly divided into different groups (n = 7). Memory impairment was induced via orally administration of 300 mg/kg Aluminum Chloride for 28 days. Based on respective group, animals received 100, 250, 500 mg/kg of Citicoline or 50, 100, 150 mg/kg of Magnesium sulfate (MgSO4), intraperitoneally. In co-administration, 50 mg/kg of MgSO4 injected concomitantly with 100, 250, or 500 mg/kg of Citicoline. Rivastigmine (2 mg/kg intraperitoneally) was used as a positive control. Memory was evaluated using the Object Recognition Task (ORT) and Passive Avoidance Test (PAT). RESULTS: The studied doses of Citicoline or MgSO4 when administered individually showed significant increase in the discrimination index in ORT and latency time in the PAT compared to the Aluminium chloride (AlCl3) treated group. Concomitant injection of 50 mg/kg MgSO4 with the different doses of Citicoline strongly increased the above indices values in comparison to each alone. CONCLUSION: The findings show, individual administration of Citicoline or MgSO4 inverted the AlCl3-induced memory impairment in a dose independent manner. The addition of MgSO4 to the Citicoline showed a synergistic effect in the PAT and likely additive effect in the ORT.

4.
Clin Psychopharmacol Neurosci ; 18(1): 81-92, 2020 Feb 29.
Article in English | MEDLINE | ID: mdl-31958909

ABSTRACT

OBJECTIVE: Diabetes mellitus is associated with cognitive disorders such as Alzheimer's disease. Studies have shown that citicoline and benfotiamine can improve memory and learning through different mechanism of actions. The aim of this study was to compare the individual effects of benfotiamine (100, 200, 300 mg/kg) and citicoline (50, 100, 250, 500 mg/kg, gavage) and their co-administration on memory impairments in diabetic mice. METHODS: Diabetes was induced by a single dose of streptozotocin (STZ, 140 mg/kg, intraperitoneal) and benfotiamine and/or citicoline were administered for three weeks. Memory was evaluated using the object recognition task (ORT) and passive avoidance test (PAT). RESULTS: Results from ORT shows that citicoline at 50, 100, 250, and 500 mg/kg and benfotiamine at 100, 200, and 300 mg/kg and their combination (benfotiamine at 100 mg/kg added to citicoline at 50, 100, and 250 mg/kg) are equally effective in reversing the memory loss induced by STZ (p < 0.001). PAT results demonstrate that citicoline at 100, 250, and 500 mg/kg and benfotiamine at above doses did not improve the latency time when administered separately, but benfotiamine at a fixed dose of 100 mg/kg in the presence of citicoline at 50, 100, and 250 mg/kg increased the latency time and improved memory significantly. CONCLUSION: In conclusion, in PAT, co-administration of benfotiamine and citicoline was more effective than either alone in improving memory. Regarding ORT, although benfotiamine added to citicoline improved memory notably, the difference between combination therapy and single-drug therapy was not considerable.

5.
Brain Res ; 1232: 132-8, 2008 Sep 26.
Article in English | MEDLINE | ID: mdl-18687315

ABSTRACT

The beneficial effects of physical activity and exercise on brain functions such as improvement in learning and memory are well documented. The aim of this study was to examine the possible role of hippocampal angiotensin II receptors in voluntary exercise-induced enhancement of learning and memory in rat. In order to block the hippocampal angiotension II receptors, the animals received a single injection of latex microbeads for delivery of [Sar1 Thr8]-Angiotensin II into the hippocampus. The animals were exposed to five consecutive nights of exercise and then their learning and memory were tested on the Morris water maze (MWM) task using a two-trial-per-day for five consecutive days. A probe trial was performed 2 days after the last training day. Our results showed that hippocampal angiotensin II receptor blockade reversed the exercise-induced improvement in learning and memory in rat.


Subject(s)
Hippocampus/physiology , Learning/physiology , Memory/physiology , Physical Conditioning, Animal/physiology , Physical Conditioning, Animal/psychology , Receptor, Angiotensin, Type 2/physiology , Angiotensin II/administration & dosage , Angiotensin II/analogs & derivatives , Angiotensin II/biosynthesis , Angiotensin II/pharmacology , Angiotensin II/physiology , Animals , Male , Maze Learning/drug effects , Microinjections , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...