Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(5): e0302850, 2024.
Article in English | MEDLINE | ID: mdl-38748711

ABSTRACT

BACKGROUND AND AIM: Vascular dementia (VD) is a common type of dementia. This study aimed to evaluate the effects of low and high doses of lutein administration in bilateral-carotid vessel occlusion (2VO) rats. EXPERIMENTAL PROCEDURE: The rats were divided into the following groups: the control, sham-, vehicle (2VO+V) groups, and two groups after 2VO were treated with lutein 0.5 (2VO+LUT-o.5) and 5mg/kg (2VO+LUT-5). The passive-avoidance and Morris water maze were performed to examine fear and spatial memory. The field-potential recording was used to investigate the properties of basal synaptic transmission (BST), paired-pulse ratio (PPR), as an index for measurement of neurotransmitter release, and long-term potentiation (LTP). The hippocampus was removed to evaluate hippocampal cells, volume, and MDA level. RESULT: Treatment with low and high doses improves spatial memory and LTP impairment in VD rats, but only the high dose restores the fear memory, hippocampal cell loss, and volume and MDA level. Interestingly, low-dose, but not high-dose, increased PPR. However, BST recovered only in the high-dose treated group. CONCLUSIONS: Treatment with a low dose might affect neurotransmitter release probability, but a high dose affects postsynaptic processes. It seems likely that low and high doses improve memory and LTP through different mechanisms.


Subject(s)
Dementia, Vascular , Disease Models, Animal , Hippocampus , Long-Term Potentiation , Lutein , Neuronal Plasticity , Animals , Dementia, Vascular/drug therapy , Dementia, Vascular/physiopathology , Rats , Male , Neuronal Plasticity/drug effects , Long-Term Potentiation/drug effects , Hippocampus/drug effects , Hippocampus/metabolism , Lutein/pharmacology , Lutein/administration & dosage , Lutein/therapeutic use , Memory/drug effects , Rats, Wistar , Spatial Memory/drug effects , Dose-Response Relationship, Drug , Maze Learning/drug effects , Synaptic Transmission/drug effects
2.
Int J Dev Neurosci ; 82(4): 303-313, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35293019

ABSTRACT

Sunset Yellow FCF (E110) is a water-soluble synthetic dye that has adverse neurobehavioral effects. Coenzyme Q10 (CoQ10) is known as a neuroprotective agent. The present study aimed to evaluate the effects of post-weaning exposure to Sunset Yellow FCF on behavioral and structural changes in the adult rat medial prefrontal cortex (mPFC) and the protective effects of CoQ10. The weanling rats were randomly divided into six groups: distilled water, CoQ10 (10 mg/kg/day), and low (2.5 mg/kg/day) and high (70 mg/kg/day) doses of Sunset Yellow FCF with or without CoQ10 consumption for 6 weeks. A battery of behavioral tests including open field and Morris water maze tests were done at the end of the sixth week, and then the animals' brains were removed for stereological methods. Our finding indicated that the high dose of Sunset Yellow FCF led to a reduced total volume of mPFC (15.16%), especially in the anterior cingulate cortex (ACC) region (21.96%), along with loss of neurons (32%) and glial cells (37%), which was associated with higher anxiety behavior and loss of spatial memory. However, CoQ10 prevented the neural loss and glial cells, improved anxiety-like behaviors, and memory impairment. On the other hand, the acceptable daily dose (low dose of Sunset Yellow FCF) did not show a discernible effect on the same parameters. This study showed that the CoQ10 can protect the alteration in mPFC structure and behavioral changes of the rats exposed to high dose of Sunset Yellow FCF.


Subject(s)
Neuroglia , Prefrontal Cortex , Animals , Azo Compounds , Rats , Ubiquinone/analogs & derivatives , Weaning
3.
Brain Behav ; 12(1): e2447, 2022 01.
Article in English | MEDLINE | ID: mdl-34855284

ABSTRACT

OBJECTIVES: In the present study, we aimed to determine whether intraperitoneal injection of platelet-rich plasma (PRP) could have a neuroprotective effect on learning, memory, and synaptic plasticity impairment as well as hippocampal apoptosis in rats with hepatic encephalopathy induced by bile duct ligated (BDL). METHODS: The rats were divided into four groups: the control, sham, BDL+ V (vehicle), and BDL+ PRP. The BDL rats were treated with PRP immediately after the surgery, and the injection was done every 3 days for 30 days. The passive avoidance and Morris water maze tests were used for the evaluation of learning and memory. The long-term potentiation (LTP), basal-synaptic transmission, and paired-pulse ratio, as an index for measurement of neurotransmitter release probability, were evaluated by field-potential recording. After taking a blood sample for assessment of the liver enzymes, the animals were sacrificed and their hippocampus was removed for evaluation of cleaved caspase-3 by Western blot. RESULTS: Serological assessment of the liver function showed that BDL severely impaired the liver function. Also, PRP treatment could partially improve the liver dysfunction along with recovery in fear memory and spatial learning memory performance, LTP, basal-synaptic transmission, and neurotransmitter release probability. PRP-treated rats also showed a significant reduction in neuronal apoptosis in the CA1 area. CONCLUSIONS: The results of this study suggest that PRP improves cognitive performance and synaptic plasticity in BDL rats via direct neuroprotective property and/or indirectly by improvement of hepatic dysfunction.


Subject(s)
Hepatic Encephalopathy , Platelet-Rich Plasma , Animals , Apoptosis , Disease Models, Animal , Hepatic Encephalopathy/therapy , Hippocampus , Long-Term Potentiation , Maze Learning , Neuronal Plasticity , Rats , Spatial Learning
4.
Brain Res ; 1776: 147750, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34896332

ABSTRACT

INTRODUCTION: The incidence rate of senile dementia is rising, and there is no definite cure for it yet. Cell therapy, as a new investigational approach, has shown promising results. Hair bulges with abundant easily accessible neural stem cells permit autologous implantation in irreversible neurodegenerative disorders. METHODS: Fifty rats were randomly divided into 5 groups of control, sham-operation, two-common carotid vessel-occlusion rats that received vehicle (2VO + V), 2VO rats that received 1 × 106 epidermal stem cells (2VO + ESC1), and 2VO rats that received 2.5 × 106 epidermal stem cells (2VO + ESC2) in 300 µl PBS intravenously on days 4, 9, and 14 after surgery. The epidermal neural crest stem cells (EPI-NCSCs) were isolated from hair follicles of rat whiskers. The open-field, passive avoidance, and Morris water maze were used as behavioral tests. The basal-synaptic transmission, long-term potentiation (LTP), and short-term synaptic plasticity were evaluated by field-potential recording of the CA1 hippocampal area. RESULTS: 30 days after the first transplantation in the 2VO + ESC1 group, functional recovery was prominent in anxiety and fear memory compared to the 2VO + ESC2 group, while LTP induction was recovered in both groups of grafted animals without improvement in basal synaptic transmission. These positive recoveries may be related to the release of different neurotrophic factors from grafted cells that can stimulate endogenous neurogenesis and synaptic plasticity. CONCLUSIONS: Our results showed that EPI-NCSCs implantation could rescue LTP and cognitive disability in 2VO rats, while transplantation of 1 million cells showed better performance relative to 2.5 million cells.


Subject(s)
Dementia, Vascular/therapy , Neural Crest/cytology , Neural Stem Cells/transplantation , Neuroprotection/physiology , Stem Cell Transplantation/methods , Animals , Avoidance Learning/physiology , Dementia, Vascular/physiopathology , Disease Models, Animal , Maze Learning/physiology , Rats , Synaptic Transmission/physiology
5.
Brain Res Bull ; 174: 122-130, 2021 09.
Article in English | MEDLINE | ID: mdl-34116172

ABSTRACT

This study aimed to find out cellular and electrophysiological effects of the edaravone (EDR) administration following induction of vascular dementia (VaD) via bilateral-carotid vessel occlusion (2VO). The rats were randomly divided into control, sham, 2VO + V (vehicle), and 2VO + EDR groups. EDR was administered once a day from day 0-28 after surgery. The passive-avoidance, Morris water-maze, and open-field tests were used for evaluation of memory, locomotor, and anxiety. The field-potential recording was used for assessment of electrophysiological properties of the hippocampus; and after sacrificing, the cerebral hemispheres were removed for stereological study and evaluation of MDA levels. The long-term potentiation (LTP), paired-pulse ratio (PPR), and input-output (I/O) curves were evaluated as indexes for long-term and short-term synaptic plasticity, and basal-synaptic transmission (BST), respectively. The 2VO led to increases in MDA level with considerable neuronal loss and decreases in the volume of the hippocampus, along with a reduction in the BST and LTP induction which was associated with a decrement in PPR and ultimate loss in memory with higher anxiety behavior. However, administration of EDR caused a decline in MDA and prevented the neural loss and volume of the hippocampus, rescued BST and LTP depression, improved memory and anxiety without any effects on PPR. Therefore, most likely through the improvement of MDA level, and the hippocampal cell number and volume, EDR leads to recovery of synaptic plasticity and behavioral performance. Because of the LTP rescue, without recovery of PPR, it is likely that the EDR improved LTP through the post-synaptic neurons.


Subject(s)
Dementia, Vascular/drug therapy , Edaravone/therapeutic use , Free Radical Scavengers/therapeutic use , Hippocampus/pathology , Animals , Antioxidants/metabolism , Avoidance Learning , Carotid Stenosis/drug therapy , Carotid Stenosis/pathology , Carotid Stenosis/psychology , Chronic Disease , Dementia, Vascular/pathology , Dementia, Vascular/psychology , Electroencephalography , Long-Term Potentiation , Male , Maze Learning , Memory/drug effects , Motor Activity , Neuronal Plasticity/drug effects , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...