Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Microbiol Spectr ; 9(3): e0199821, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34937191

ABSTRACT

In the context of a recent rise in prevalence of NDM-encoding carbapenemase-producing Enterobacterales (CPE) in the province of QC, Canada, the genetic environment of blaNDM-1 was investigated. Three NDM-producing clinical isolates of Enterobacter hormaechei recovered from hospitalized patients involved in a putative outbreak were further characterized by whole-genome sequencing (WGS). Two isolates were confirmed by pulsed-field gel electrophoresis and WGS to be closely related. In addition to a ∼128 kb IncFII conjugative multidrug-resistance (MDR) plasmid, these isolates possessed a ∼45 kb mobilizable IncR MDR plasmid containing 2 MDR regions: a complex class 1 integron harboring blaNDM-1 and 7 other AMR genes, and the IS26-mph(A)-mrx-mphR(A)-IS6100 azithromycin resistance unit. The predicted antimicrobial resistance (AMR) genes correlated with the antimicrobial susceptibility testing results. The multidrug-resistant phenotype in addition to the presence of two important mobile genetic elements, suggest a potent role as a reservoir of antibiotic resistance for such a small IncR plasmid. IMPORTANCE Analyzing the genetic environment of clinically relevant MDR genes can provide information on the way in which such genes are maintained and disseminated. Understanding this phenomenon is of interest for clinicians as it can also provide insight on where these genes might have been sourced, possibly supporting outbreak investigations.


Subject(s)
Anti-Bacterial Agents/pharmacology , Azithromycin/pharmacology , Enterobacter/drug effects , Enterobacter/genetics , Enterobacteriaceae Infections/microbiology , Plasmids/genetics , beta-Lactamases/metabolism , Disease Outbreaks , Drug Resistance, Bacterial , Enterobacter/enzymology , Enterobacter/isolation & purification , Enterobacteriaceae Infections/epidemiology , Humans , Microbial Sensitivity Tests , Plasmids/metabolism , Quebec/epidemiology , beta-Lactamases/genetics
2.
Front Microbiol ; 11: 1317, 2020.
Article in English | MEDLINE | ID: mdl-32625190

ABSTRACT

Whole-genome sequencing (WGS) is the method of choice for bacterial subtyping and it is rapidly replacing the more traditional methods such as pulsed-field gel electrophoresis (PFGE). Here we used the high-resolution core genome single nucleotide variant (cgSNV) typing method to characterize clinical and food from Salmonella enterica serovar Heidelberg isolates in the context of source attribution. Additionally, clustered regularly interspaced short palindromic repeats (CRISPR) analysis was included to further support this method. Our results revealed that cgSNV was highly discriminatory and separated the outbreak isolates into distinct clusters (0-4 SNVs). CRISPR analysis was also able to distinguish outbreak strains from epidemiologically unrelated isolates. Specifically, our data clearly demonstrated the strength of these two methods to determine the probable source(s) of a 2012 epidemiologically characterized outbreak of S. Heidelberg. Using molecular cut-off of 0-10 SNVs, the cgSNV analysis of 246 clinical and food isolates of S. Heidelberg collected in Québec, in the same year of the outbreak event, revealed that retail and abattoir chicken isolates likely represent an important source of human infection to S. Heidelberg. Interestingly, the isolates genetically related by cgSNV also harbored the same CRISPR as outbreak isolates and clusters. This indicates that CRISPR profiles can be useful as a complementary approach to determine source attribution in foodborne outbreaks. Use of the genomic analysis also allowed to identify a large number of cases that were missed by PFGE, indicating that most outbreaks are probably underestimated. Although epidemiological information must still support WGS-based results, cgSNV method is a highly discriminatory method for the resolution of outbreak events and the attribution of these events to their respective sources. CRISPR typing can serve as a complimentary tool to this analysis during source tracking.

3.
Braz J Microbiol ; 50(1): 175-183, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30637660

ABSTRACT

The antibiotic susceptibility profile and antimicrobial resistance determinants were characterized on Gram-negative bacilli (GNB) isolated from Algerian hospital effluents. Among the 94 isolates, Enterobacteriaceae was the predominant family, with Escherichia coli and Klebsiella pneumoniae being the most isolated species. In non-Enterobacteriaceae, Acinetobacter and Aeromonas were the predominant species followed by Pseudomonas, Comamonas, Pasteurella, and Shewanella spp. The majority of the isolates were multidrug-resistant (MDR) and carried different antimicrobial resistance genes including blaCTX-M, blaTEM, blaSHV, blaOXA-48-like, blaOXA-23, blaOXA-51, qnrB, qnrS, tet(A), tet(B), tet(C), dfrA1, aac(3)-IIc (aacC2), aac(6')-1b, sul1, and sul2. The qacEΔ1-sul1 and intI2 signatures of class 1 and class 2 integrons, respectively, were also detected. Microarray hybridization on MDR E. coli revealed additional resistance genes (aadA1 and aph3strA, tet30, mphA, dfrA12, blacmy2, blaROB1, and cmlA1) and classified the tested strains as commensals, thus highlighting the potential role of humans in antibiotic resistance dissemination. This study is the first report of blaOXA-48-like in Klebsiella oxytoca in Algeria and blaOXA-23 in A. baumannii in Algerian hospital effluents. The presence of these bacteria and resistance genes in hospital effluents represents a serious public health concern since they can be disseminated in the environment and can colonize other hosts.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/isolation & purification , Sewage/microbiology , Algeria , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gram-Negative Bacteria/classification , Gram-Negative Bacteria/genetics , Hospitals , Humans , Klebsiella oxytoca/classification , Klebsiella oxytoca/drug effects , Klebsiella oxytoca/genetics , Klebsiella oxytoca/isolation & purification , Microbial Sensitivity Tests , beta-Lactamases/genetics , beta-Lactamases/metabolism
4.
Article in English | MEDLINE | ID: mdl-30455248

ABSTRACT

We analyzed 254 Shigella species isolates collected in Québec, Canada, during 2013 and 2014. Overall, 23.6% of isolates showed reduced susceptibility to azithromycin (RSA) encoded by mphA (11.6%), ermB (1.7%), or both genes (86.7%). Shigella strains with RSA were mostly isolated from men who have sex with men (68.8% or higher) from the Montreal region. A complete sequence analysis of six selected plasmids from Shigella sonnei and different serotypes of Shigella flexneri emphasized the role of IS26 in the dissemination of RSA.


Subject(s)
Azithromycin/pharmacology , Shigella/drug effects , Shigella/pathogenicity , Anti-Bacterial Agents/pharmacology , Canada , Homosexuality, Male/statistics & numerical data , Humans , Male , Microbial Sensitivity Tests , Quebec , Shigella flexneri/drug effects , Shigella flexneri/pathogenicity , Shigella sonnei/drug effects , Shigella sonnei/pathogenicity
5.
Food Microbiol ; 73: 99-110, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29526232

ABSTRACT

Salmonella enterica serovar Heidelberg (S. Heidelberg) is one of the top serovars causing human salmonellosis. This serovar ranks second and third among serovars that cause human infections in Québec and Canada, respectively, and has been associated with severe infections. Traditional typing methods such as PFGE do not display adequate discrimination required to resolve outbreak investigations due to the low level of genetic diversity of isolates belonging to this serovar. This study evaluates the ability of four whole genome sequence (WGS)-based typing methods to differentiate among 145 S. Heidelberg strains involved in four distinct outbreak events and sporadic cases of salmonellosis that occurred in Québec between 2007 and 2016. Isolates from all outbreaks were indistinguishable by PFGE. The core genome single nucleotide variant (SNV), core genome multilocus sequence typing (MLST) and whole genome MLST approaches were highly discriminatory and separated outbreak strains into four distinct phylogenetic clusters that were concordant with the epidemiological data. The clustered regularly interspaced short palindromic repeats (CRISPR) typing method was less discriminatory. However, CRISPR typing may be used as a secondary method to differentiate isolates of S. Heidelberg that are genetically similar but epidemiologically unrelated to outbreak events. WGS-based typing methods provide a highly discriminatory alternative to PFGE for the laboratory investigation of foodborne outbreaks.


Subject(s)
Multilocus Sequence Typing/methods , Salmonella Food Poisoning/microbiology , Salmonella Infections/microbiology , Salmonella enterica/isolation & purification , Whole Genome Sequencing/methods , Bacterial Typing Techniques/methods , Genome, Bacterial , Humans , Phylogeny , Quebec/epidemiology , Salmonella Food Poisoning/epidemiology , Salmonella Infections/epidemiology , Salmonella enterica/classification , Salmonella enterica/genetics
6.
PLoS One ; 13(2): e0192233, 2018.
Article in English | MEDLINE | ID: mdl-29401524

ABSTRACT

Salmonella enterica serovar Heidelberg (S. Heidelberg) is one of the top serovars causing human salmonellosis. The core genome single nucleotide variant pipeline (cgSNV) is one of several whole genome based sequence typing methods used for the laboratory investigation of foodborne pathogens. SNV detection using this method requires a reference genome. The purpose of this study was to investigate the impact of the choice of the reference genome on the cgSNV-informed phylogenetic clustering and inferred isolate relationships. We found that using a draft or closed genome of S. Heidelberg as reference did not impact the ability of the cgSNV methodology to differentiate among 145 S. Heidelberg isolates involved in foodborne outbreaks. We also found that using a distantly related genome such as S. Dublin as choice of reference led to a loss in resolution since some sporadic isolates were found to cluster together with outbreak isolates. In addition, the genetic distances between outbreak isolates as well as between outbreak and sporadic isolates were overall reduced when S. Dublin was used as the reference genome as opposed to S. Heidelberg.


Subject(s)
Genome, Bacterial , Polymorphism, Single Nucleotide , Salmonella enterica/genetics , Disease Outbreaks , Ireland/epidemiology , Phylogeny , Salmonella Infections/epidemiology , Salmonella Infections/microbiology , Salmonella enterica/classification
7.
Microb Drug Resist ; 23(4): 429-436, 2017 Jun.
Article in English | MEDLINE | ID: mdl-27505638

ABSTRACT

The whole genome sequencing of extensively drug-resistant Shewanella xiamenensis T17 isolated from hospital effluents in Algeria revealed the presence of a novel 268.4 kb plasmid designated pSx1, which carries several antibiotic-resistance genes in the novel Tn1696 derivative (Tn6297), in addition to the chromosomal blaOXA-48-like gene (blaOXA-416). The presence of the plasmid was confirmed by nuclease S1-PFGE analysis and transformation by electroporation into Escherichia coli DH10B. Tn6297 contains an In27 class 1 integron harboring the dfrA12-orfF-aadA2 array, msr(E) and mph(E) associated with IS26; a new efflux pump multidrug resistance composite transposon delimited by two ISEc29s; Tn-tet harboring tetR and tetA(C); a class 1 integron with the qacG gene cassette; qnrVC6 and dfrA23 associated with ISCR1; and a complex class 1 integron In4-like containing aacC1, aadA1, blaVEB-16, catA2, sul1Δ, cmlA9, tetR, tetA(G), aac(6')-II, and blaPSE-1. Its mer operon carries merB, but lacks merC, in contrast to Tn1696 and Tn21. This study represents the first characterization of a multidrug-resistant transposon and multidrug resistance plasmid in Shewanella and is the first report of blaOXA-416 in Algeria, providing evidence that Shewanella spp. could be an important reservoir and vehicle for drug resistance genes.


Subject(s)
DNA Transposable Elements , Drug Resistance, Multiple, Bacterial/genetics , Plasmids/metabolism , Shewanella/genetics , beta-Lactamases/genetics , Algeria/epidemiology , Anti-Bacterial Agents/pharmacology , Cloning, Molecular , Electroporation , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Gram-Negative Bacterial Infections/drug therapy , Gram-Negative Bacterial Infections/epidemiology , Gram-Negative Bacterial Infections/microbiology , High-Throughput Nucleotide Sequencing , Hospitals , Humans , Integrons , Microbial Sensitivity Tests , Plasmids/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Shewanella/drug effects , Shewanella/isolation & purification , Shewanella/metabolism , Transformation, Bacterial , beta-Lactamases/metabolism
8.
Genome Announc ; 4(6)2016 Nov 10.
Article in English | MEDLINE | ID: mdl-27834700

ABSTRACT

In this study, we present the first complete genome of an extensively drug-resistant strain of Shewanella xiamenensis, collected from hospital effluents in Algeria. This genome includes the chromosome and a large new plasmid harboring several drug-resistance genes.

SELECTION OF CITATIONS
SEARCH DETAIL
...