Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 14(19)2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34640088

ABSTRACT

In this report, the heating efficiencies of γ-Fe2O3 and hybrid γ-Fe2O3-TiO2 nanoparticles NPs under an alternating magnetic field (AMF) have been investigated to evaluate their feasible use in magnetic hyperthermia. The NPs were synthesized by a modified sol-gel method and characterized by different techniques. X-ray diffraction (XRD), Mössbauer spectroscopy and electron microscopy analyses confirmed the maghemite (γ-Fe2O3) phase, crystallinity, good uniformity and 10 nm core sizes of the as-synthesized composites. SQUID hysteresis loops showed a non-negligible coercive field and remanence suggesting the ferromagnetic behavior of the particles. Heating efficiency measurements showed that both samples display high heating potentials and reached magnetic hyperthermia (42 °C) in relatively short times with shorter time (~3 min) observed for γ-Fe2O3 compared to γ-Fe2O3-TiO2. The specific absorption rate (SAR) values calculated for γ-Fe2O3 (up to 90 W/g) are higher than that for γ-Fe2O3-TiO2 (~40 W/g), confirming better heating efficiency for γ-Fe2O3 NPs. The intrinsic loss power (ILP) values of 1.57 nHm2/kg and 0.64 nHm2/kg obtained for both nanocomposites are in the range reported for commercial ferrofluids (0.2-3.1 nHm2/kg). Finally, the heating mechanism responsible for NP heat dissipation is explained concluding that both Neel and Brownian relaxations are contributing to heat production. Overall, the obtained high heating efficiencies suggest that the fabricated nanocomposites hold a great potential to be utilized in a wide spectrum of applications, particularly in magnetic photothermal hyperthermia treatments.

2.
Beilstein J Nanotechnol ; 11: 1891-1904, 2020.
Article in English | MEDLINE | ID: mdl-33447500

ABSTRACT

Free and partially encapsulated manganese ferrite (MnFe2O4) nanoparticles are synthesized and characterized regarding structure, surface, and electronic and magnetic properties. The preparation method of partially encapsulated manganese ferrite enables the formation of a hybrid nanoparticle/tube system, which exhibits properties of manganese ferrite nanoparticles inside and attached to the external surface of the tubes. The effect of having manganese ferrite nanoparticles inside the tubes is observed as a shift in the X-ray diffraction peaks and as an increase in stress, hyperfine field, and coercivity when compared to free manganese ferrite nanoparticles. On the other hand, a strong charge transfer from the multiwall carbon nanotubes is attributed to the attachment of manganese ferrite nanoparticles outside the tubes, which is detected by a significant decrease in the σ band emission of the ultraviolet photoemission spectroscopy signal. This is followed by an increase in the density of states at the Fermi level of the attached manganese ferrite nanoparticles in comparison to free manganese ferrite nanoparticles, which leads to an enhancement of the metallic properties.

3.
Nanoscale Res Lett ; 10(1): 971, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26068078

ABSTRACT

We report investigation on properties of multiwall carbon nanotubes (mCNTs) containing Ni residuals before and after encapsulation of zinc ferrite nanoparticles. The pristine tubes exhibit metallic character with a 0.3 eV reduction in the work function along with ferromagnetic behavior which is attributed to the Ni residuals incorporated during the preparation of tubes. Upon encapsulation of zinc ferrite nanoparticles, 0.5 eV shift in Fermi level position and a reduction in both the π band density of state along with a change in the hybridized sp(2)/sp(3) ratio of the tubes from 2.04 to 1.39 are observed. As a result of the encapsulation, enhancement in the σ bands density of state and coating of the zinc ferrite nanoparticles by the internal layers of the CNTs in the direction along the tube axis is observed. Furthermore, Ni impurities inside the tubes are attracted to the encapsulated zinc ferrite nanoparticles, suggesting the possibility of using these particles as purifying agents for CNTs upon being synthesized using magnetic catalyst particles. Charge transfer from Ni/mCNTs to the ZnFe2O4 nanoparticles is evident via reduction of the density of states near the Fermi level and a 0.3 eV shift in the binding energy of C 1 s core level ionization. Furthermore, it is demonstrated that encapsulated zinc ferrite nanoparticles in mCNTs resulted in two interacting sub-systems featured by distinct blocking temperatures and enhanced magnetic properties; i.e., large coercivity of 501 Oe and saturation magnetization of 2.5 emu/g at 4 K.

SELECTION OF CITATIONS
SEARCH DETAIL
...