Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 50(7): 2501-2509, 2021 Feb 21.
Article in English | MEDLINE | ID: mdl-33514951

ABSTRACT

Reaction of LiOCtBu2Ph with TlPF6 forms the dimeric Tl2(OCtBu2Ph)2 complex, a rare example of a homoleptic thallium alkoxide complex demonstrating formally two-coordinate metal centers. Characterization of Tl2(OCtBu2Ph)2 by 1H and 13C NMR spectroscopy and X-ray crystallography reveals the presence of two isomers differing by the mutual conformation of the alkoxide ligands, and by the planarity of the central Tl-O-Tl-O plane. Tl2(OCtBu2Ph)2 serves as a convenient precursor to the formation of old and new [M(OCtBu2Ph)n] complexes (M = Cr, Fe, Cu, Zn), including a rare example of T-shaped Zn(OCtBu2Ph)2(THF) complex, which could not be previously synthesized using more conventional LiOR/HOR precursors. The reaction of [Ru(cymene)Cl2]2 with Tl2(OCtBu2Ph)2 results in the formation of a ruthenium(ii) alkoxide complex. For ruthenium, the initial coordination of the alkoxide triggers C-H activation at the ortho-H of [OCtBu2Ph] which results in its bidentate coordination. In addition to Tl2(OCtBu2Ph)2, related Tl2(OCtBu2(3,5-Me2C6H3))2 was also synthesized, characterized, and shown to exhibit similar reactivity with iron and ruthenium precursors. Synthetic, structural, and spectroscopic characterizations are presented.

2.
Inorg Chem ; 57(15): 9425-9438, 2018 Aug 06.
Article in English | MEDLINE | ID: mdl-30015481

ABSTRACT

The reaction of HOR' (OR' = di-t-butyl-(3,5-diphenylphenyl)methoxide) with an iron(II) amide precursor forms the iron(II) bis(alkoxide) complex Fe(OR')2(THF)2 (2). 2 (5-10 mol %) serves as a catalyst for the conversion of aryl azides into the corresponding azoarenes. The highest yields are observed for aryl azides featuring two ortho substituents; other substitution patterns in the aryl azide precursor lead to moderate or low yields. The reaction of 2 with stoichiometric amounts (2 equiv) of the corresponding aryl azide shows the formation of azoarenes as the only organic products for the bulkier aryl azides (Ar = mesityl, 2,6-diethylphenyl). In contrast, formation of tetrazene complexes Fe(OR')2(ArNNNNAr) (3-6) is observed for the less bulky aryl azides (Ar = phenyl, 4-methylphenyl, 4-methoxyphenyl, 3,5-dimethylphenyl). The electronic structure of selected tetrazene complexes was probed by spectroscopy (field-dependent 57Fe Mössbauer and high-frequency EPR) and density functional theory calculations. These studies revealed that Fe(OR')2(ArNNNNAr) complexes contain high-spin ( S = 5/2) iron(III) centers exchange-coupled to tetrazene radical anions. Tetrazene complexes Fe(OR')2(ArNNNNAr) produce the corresponding azoarenes (ArNNAr) upon heating. Treatment of a tetrazene complex Fe(OR')2(ArNNNNAr) with a different azide (N3Ar') produces all three possible products ArNNAr, ArNNAr', and Ar'NNAr'. These experiments and quantum mechanics/molecular mechanics calculations exploring the reaction mechanism suggest that the tetrazene functionality serves as a masked form of the reactive iron mono(imido) species.

3.
Dalton Trans ; 45(24): 9794-804, 2016 Jun 14.
Article in English | MEDLINE | ID: mdl-27073074

ABSTRACT

In this paper, we report the synthesis and reactivity of a rare mononuclear chromium(ii) bis(alkoxide) complex, Cr(OR')2(THF)2, that is supported by a new bulky alkoxide ligand (OR' = di-t-butyl-(3,5-diphenylphenyl)methoxide). The complex is prepared by protonolysis of square-planar Cr(N(SiMe3)2)2(THF)2 with HOR'. X-ray structure determination disclosed that Cr(OR')2(THF)2 features a distorted seesaw geometry, in contrast to nearly all other tetra-coordinate Cr(ii) complexes, which are square-planar. The reactivity of Cr(OR')2(THF)2 with aldehydes, ketones, and carbon dioxide was investigated. Treatment of Cr(OR')2(THF)2 with two equivalents of aromatic aldehydes ArCHO (ArCHO = benzaldehyde, 4-anisaldehyde, 4-trifluorbenzaldehyde, and 2,4,6-trimethylbenzaldehyde) leads cleanly to the formation of Cr(iv) diolate complexes Cr(OR')2(O2C2H2Ar2) that were characterized by UV-vis and IR spectroscopies and elemental analysis; the representative complex Cr(OR')2(O2C2H2Ph2) was characterized by X-ray crystallography. In contrast, no reductive coupling was observed for ketones: treatment of Cr(OR')2(THF)2 with one or two equivalents of benzophenone forms invariably a single ketone adduct Cr(OR')2(OCPh2) which does not react further. QM/MM calculations suggest the steric demands prevent ketone coupling, and demonstrate that a mononuclear Cr(iii) bis-aldehyde complex with partially reduced aldehydes is sufficient for C-C bond formation. The reaction of Cr(OR')2(THF)2 with CO2 leads to the insertion of CO2 into a Cr-OR' bond, followed by complex rearrangement to form a diamagnetic dinuclear paddlewheel complex Cr2(O2COR')4(THF)2, that was characterized by NMR, UV-vis, and IR spectroscopy, and X-ray crystallography.

4.
Inorg Chem ; 54(12): 5624-33, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-26043187

ABSTRACT

Treatment of NiCl2(dme) and NiBr2(dme) (dme = dimethoxyethane) with 2 equiv of LiOR (OR = OC(t)Bu2Ph) forms the distorted trigonal planar complexes [NiLiX(OR)2(THF)2] (THF = tetrahydrofuran) 5 (X = Cl) and 6 (X = Br). The reaction of CuX2 (X = Cl, Br) with 2 equiv of LiOR affords the Cu(I) product Cu4(OR)4 (7). The same product can be obtained using the Cu(I) starting material CuCl. NMR studies indicated that the reduction of Cu(II) to Cu(I) is accompanied by the oxidation of the alkoxide RO(-) to form the alkoxy radical RO(•), which subsequently forms tert-butyl phenyl ketone by ß-scission. Treatment of compounds 1-4 ([M2Li2Cl2(OR)4], M = Cr-Co) with thallium hexafluorophosphate allowed the isolation of the distorted tetrahedral complexes of the form M(OR)2(THF)2 for M = Mn (8), Fe (9), and Co (10). Cyclic voltammetry performed on compounds 8-10 demonstrated irreversible oxidations for all complexes, with the iron complex 9 being the most reducing. Complex 9 shows a reactivity toward PhIO and Ph3SbS to form the corresponding dinuclear iron(III) complexes Fe2(O)(OR)4(THF)2 (11) and Fe2(S)(OR)4(THF)2 (12), respectively. X-ray structural studies were performed, showing that the Fe-O-Fe angle for complex 11 is 176.4(1)° and that the Fe-S-Fe angle for complex 12 is 164.83(3)°.

SELECTION OF CITATIONS
SEARCH DETAIL
...