Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Metab Eng Commun ; 4: 37-47, 2017 Jun.
Article in English | MEDLINE | ID: mdl-29468131

ABSTRACT

Directed evolution of enzymes consists of an iterative process of creating mutant libraries and choosing desired phenotypes through screening or selection until the enzymatic activity reaches a desired goal. The biggest challenge in directed enzyme evolution is identifying high-throughput screens or selections to isolate the variant(s) with the desired property. We present in this paper a computational metabolic engineering framework, Selection Finder (SelFi), to construct a selection pathway from a desired enzymatic product to a cellular host and to couple the pathway with cell survival. We applied SelFi to construct selection pathways for four enzymes and their desired enzymatic products xylitol, D-ribulose-1,5-bisphosphate, methanol, and aniline. Two of the selection pathways identified by SelFi were previously experimentally validated for engineering Xylose Reductase and RuBisCO. Importantly, SelFi advances directed evolution of enzymes as there is currently no known generalized strategies or computational techniques for identifying high-throughput selections for engineering enzymes.

2.
EBioMedicine ; 5: 147-55, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27077121

ABSTRACT

BACKGROUND: Seasonal influenza is a major public health concern in vulnerable populations. Here we investigated the safety, tolerability, and pharmacokinetics of a broadly neutralizing monoclonal antibody (VIS410) against Influenza A in a Phase 1 clinical trial. Based on these results and preclinical data, we implemented a mathematical modeling approach to investigate whether VIS410 could be used prophylactically to lessen the burden of a seasonal influenza epidemic and to protect at-risk groups from associated complications. METHODS: Using a single-ascending dose study (n = 41) at dose levels from 2 mg/kg-50 mg/kg we evaluated the safety as well as the serum and upper respiratory pharmacokinetics of a broadly-neutralizing antibody (VIS410) against influenza A (ClinicalTrials.gov identifier NCT02045472). Our primary endpoints were safety and tolerability of VIS410 compared to placebo. We developed an epidemic microsimulation model testing the ability of VIS410 to mitigate attack rates and severe disease in at risk-populations. FINDINGS: VIS410 was found to be generally safe and well-tolerated at all dose levels, from 2-50 mg/kg. Overall, 27 of 41 subjects (65.9%) reported a total of 67 treatment emergent adverse events (TEAEs). TEAEs were reported by 20 of 30 subjects (66.7%) who received VIS410 and by 7 of 11 subjects (63.6%) who received placebo. 14 of 16 TEAEs related to study drug were considered mild (Grade 1) and 2 were moderate (Grade 2). Two subjects (1 subject who received 30 mg/kg VIS410 and 1 subject who received placebo) experienced serious AEs (Grade 3 or 4 TEAEs) that were not related to study drug. VIS410 exposure was approximately dose-proportional with a mean half-life of 12.9 days. Mean VIS410 Cmax levels in the upper respiratory tract were 20.0 and 25.3 µg/ml at the 30 mg/kg and 50 mg/kg doses, respectively, with corresponding serum Cmax levels of 980.5 and 1316 µg/mL. Using these pharmacokinetic data, a microsimulation model showed that median attack rate reductions ranged from 8.6% (interquartile range (IQR): 4.7%-11.0%) for 2% coverage to 22.6% (IQR: 12.7-30.0%) for 6% coverage. The overall benefits to the elderly, a vulnerable subgroup, are largest when VIS410 is distributed exclusively to elderly individuals, resulting in reductions in hospitalization rates between 11.4% (IQR: 8.2%-13.3%) for 2% coverage and 30.9% (IQR: 24.8%-35.1%) for 6% coverage among those more than 65 years of age. INTERPRETATION: VIS410 was generally safe and well tolerated and had good relative exposure in both serum and upper respiratory tract, supporting its use as either a single-dose therapeutic or prophylactic for influenza A. Including VIS410 prophylaxis among the public health interventions for seasonal influenza has the potential to lower attack rates and substantially reduce hospitalizations in individuals over the age of 65. FUNDING: Visterra, Inc.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Antibodies, Neutralizing/administration & dosage , Hemagglutinins/immunology , Influenza, Human/drug therapy , Adolescent , Adult , Antibodies, Monoclonal/pharmacokinetics , Antibodies, Monoclonal, Humanized , Broadly Neutralizing Antibodies , Disease Outbreaks , Drug Evaluation , Female , Hemagglutinins/drug effects , Humans , Influenza, Human/immunology , Influenza, Human/virology , Male , Middle Aged , Seasons
3.
BMC Syst Biol ; 9: 94, 2015 Dec 22.
Article in English | MEDLINE | ID: mdl-26695483

ABSTRACT

BACKGROUND: Contamination of the environment with bioactive chemicals has emerged as a potential public health risk. These substances that may cause distress or disease in humans can be found in air, water and food supplies. An open question is whether these chemicals transform into potentially more active or toxic derivatives via xenobiotic metabolizing enzymes expressed in the body. We present a new prediction tool, which we call PROXIMAL (Prediction of Xenobiotic Metabolism) for identifying possible transformation products of xenobiotic chemicals in the liver. Using reaction data from DrugBank and KEGG, PROXIMAL builds look-up tables that catalog the sites and types of structural modifications performed by Phase I and Phase II enzymes. Given a compound of interest, PROXIMAL searches for substructures that match the sites cataloged in the look-up tables, applies the corresponding modifications to generate a panel of possible transformation products, and ranks the products based on the activity and abundance of the enzymes involved. RESULTS: PROXIMAL generates transformations that are specific for the chemical of interest by analyzing the chemical's substructures. We evaluate the accuracy of PROXIMAL's predictions through case studies on two environmental chemicals with suspected endocrine disrupting activity, bisphenol A (BPA) and 4-chlorobiphenyl (PCB3). Comparisons with published reports confirm 5 out of 7 and 17 out of 26 of the predicted derivatives for BPA and PCB3, respectively. We also compare biotransformation predictions generated by PROXIMAL with those generated by METEOR and Metaprint2D-react, two other prediction tools. CONCLUSIONS: PROXIMAL can predict transformations of chemicals that contain substructures recognizable by human liver enzymes. It also has the ability to rank the predicted metabolites based on the activity and abundance of enzymes involved in xenobiotic transformation.


Subject(s)
Computational Biology/methods , Xenobiotics/metabolism , Benzhydryl Compounds/metabolism , Biphenyl Compounds/metabolism , Enzymes/metabolism , Humans , Metabolic Detoxication, Phase I , Metabolic Detoxication, Phase II , Phenols/metabolism
4.
Nat Commun ; 5: 5492, 2014 Nov 20.
Article in English | MEDLINE | ID: mdl-25411059

ABSTRACT

Metabolites produced by the intestinal microbiota are potentially important physiological modulators. Here we present a metabolomics strategy that models microbiota metabolism as a reaction network and utilizes pathway analysis to facilitate identification and characterization of microbiota metabolites. Of the 2,409 reactions in the model, ~53% do not occur in the host, and thus represent functions dependent on the microbiota. The largest group of such reactions involves amino-acid metabolism. Focusing on aromatic amino acids, we predict metabolic products that can be derived from these sources, while discriminating between microbiota- and host-dependent derivatives. We confirm the presence of 26 out of 49 predicted metabolites, and quantify their levels in the caecum of control and germ-free mice using two independent mass spectrometry methods. We further investigate the bioactivity of the confirmed metabolites, and identify two microbiota-generated metabolites (5-hydroxy-L-tryptophan and salicylate) as activators of the aryl hydrocarbon receptor.


Subject(s)
Cecum/metabolism , Metabolome , Microbiota , Animals , Cecum/microbiology , Mass Spectrometry , Mice
5.
BMC Syst Biol ; 7: 129, 2013 Nov 21.
Article in English | MEDLINE | ID: mdl-24261865

ABSTRACT

BACKGROUND: Stoichiometric models provide a structural framework for analyzing steady-state cellular behavior. Models are developed either through augmentations of existing models or more recently through automatic reconstruction tools. There is currently no standardized practice or method for validating the properties of a model before placing it in the public domain. Considerable effort is often required to understand a model's inconsistencies before its reuse within new research efforts. RESULTS: We present a review of common issues in stoichiometric models typically uncovered during pathway analysis and constraint-based optimization, and we detail succinct and efficient ways to find them. We present MC3, Model and Constraint Consistency Checker, a computational tool that can be used for two purposes: (a) identifying potential connectivity and topological issues for a given stoichiometric matrix, S, and (b) flagging issues that arise during constraint-based optimization. The MC3 tool includes three distinct checking components. The first examines the results of computing the basis for the null space for Sv = 0; the second uses connectivity analysis; and the third utilizes Flux Variability Analysis. MC3 takes as input a stoichiometric matrix and flux constraints, and generates a report summarizing issues. CONCLUSIONS: We report the results of applying MC3 to published models for several systems including Escherichia coli, an adipocyte cell, a Chinese Hamster Ovary cell, and Leishmania major. Several issues with no prior documentation are identified. MC3 provides a standalone MATLAB-based comprehensive tool for model validation, a task currently performed either ad hoc or implemented in part within other computational tools.


Subject(s)
Models, Biological , Software , Systems Biology/methods , Adipocytes/metabolism , Animals , CHO Cells , Cricetinae , Cricetulus , Escherichia coli/metabolism , Leishmania major/metabolism
6.
BMC Syst Biol ; 7: 29, 2013 Mar 29.
Article in English | MEDLINE | ID: mdl-23548040

ABSTRACT

BACKGROUND: An important step in strain optimization is to identify reactions whose activities should be modified to achieve the desired cellular objective. Preferably, these reactions are identified systematically, as the number of possible combinations of reaction modifications could be very large. Over the last several years, a number of computational methods have been described for identifying combinations of reaction modifications. However, none of these methods explicitly address uncertainties in implementing the reaction activity modifications. In this work, we model the uncertainties as probability distributions in the flux carrying capacities of reactions. Based on this model, we develop an optimization method that identifies reactions for flux capacity modifications to predict outcomes with high statistical likelihood. RESULTS: We compare three optimization methods that select an intervention set comprising up- or down-regulation of reaction flux capacity: CCOpt (Chance constrained optimization), DetOpt (Deterministic optimization), and MCOpt (Monte Carlo-based optimization). We evaluate the methods using a Monte Carlo simulation-based method, MCEval (Monte Carlo Evaluations). We present two case studies analyzing a CHO cell and an adipocyte model. The flux capacity distributions required for our methods were estimated from maximal reaction velocities or elementary mode analysis. The intervention set selected by CCOpt consistently outperforms the intervention set selected by DetOpt in terms of tolerance to flux capacity variations. MCEval shows that the optimal flux predicted based on the CCOpt intervention set is more likely to be obtained, in a probabilistic sense, than the flux predicted by DetOpt. The intervention sets identified by CCOpt and MCOpt were similar; however, the exhaustive sampling required by MCOpt incurred significantly greater computational cost. CONCLUSIONS: Maximizing tolerance to variable engineering outcomes (in modifying enzyme activities) can identify intervention sets that statistically improve the desired cellular objective.


Subject(s)
Computational Biology/methods , Enzymes/metabolism , Metabolic Engineering/methods , Models, Biological , Adipocytes/metabolism , Animals , CHO Cells , Computer Simulation , Cricetinae , Cricetulus , Monte Carlo Method , Stochastic Processes
7.
Metab Eng ; 13(4): 435-44, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21292021

ABSTRACT

Expression of novel synthesis pathways in host organisms amenable to genetic manipulations has emerged as an attractive metabolic engineering strategy to overproduce natural products, biofuels, biopolymers and other commercially useful metabolites. We present a pathway construction algorithm for identifying viable synthesis pathways compatible with balanced cell growth. Rather than exhaustive exploration, we investigate probabilistic selection of reactions to construct the pathways. Three different selection schemes are investigated for the selection of reactions: high metabolite connectivity, low connectivity and uniformly random. For all case studies, which involved a diverse set of target metabolites, the uniformly random selection scheme resulted in the highest average maximum yield. When compared to an exhaustive search enumerating all possible reaction routes, our probabilistic algorithm returned nearly identical distributions of yields, while requiring far less computing time (minutes vs. years). The pathways identified by our algorithm have previously been confirmed in the literature as viable, high-yield synthesis routes. Prospectively, our algorithm could facilitate the design of novel, non-native synthesis routes by efficiently exploring the diversity of biochemical transformations in nature.


Subject(s)
Algorithms , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...