Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Pharmaceutics ; 16(3)2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38543219

ABSTRACT

Quetiapine fumarate (QTF) was approved for the treatment of schizophrenia and acute manic episodes. QTF can also be used as an adjunctive treatment for major depressive disorders. QTF oral bioavailability is limited due to its poor aqueous solubility and pre-systemic metabolism. The objective of the current investigation was the formulation development and manufacturing of solid self-nanoemulsifying drug delivery system (S-SNEDDS) formulation through a single-step continuous hot-melt extrusion (HME) process to address these drawbacks. In this study, Capmul® MCM, Gelucire® 48/16, and propylene glycol were selected as oil, surfactant, and co-surfactant, respectively, for the preparation of S-SNEDDS. Soluplus® and Klucel™ EF (1:1) were selected as the solid carrier. Response surface methodology in the form of central composite design (CCD) was utilized in the current experimental design to develop the S-SNEDDS formulations via a continuous HME technology. The developed formulations were evaluated for self-emulsifying properties, particle size distribution, thermal behavior, crystallinity, morphology, physicochemical incompatibility, accelerated stability, and in vitro drug release studies. The globule size and emulsification time of the optimized SNEDDS formulation was 92.27 ± 3.4 nm and 3.4 ± 3.38 min. The differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD) studies revealed the amorphous nature of the drug within the formulation. There were no drug-excipient incompatibilities observed following the Fourier transform infrared (FTIR) spectroscopy. The optimized formulation showed an extended-release profile for 24 h. The optimized formulation was stable for three months (last time-point tested) at 40 °C/75% RH. Therefore, the developed S-SNEDDS formulation could be an effective oral delivery platform for QTF and could lead to better therapeutic outcomes.

2.
Expert Opin Drug Deliv ; : 1-15, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38236621

ABSTRACT

INTRODUCTION: The Food and Drug Administration's approval of the first three-dimensional (3D) printed tablet, Spritam®, led to a burgeoning interest in using 3D printing to fabricate numerous drug delivery systems for different routes of administration. The high degree of manufacturing flexibility achieved through 3D printing facilitates the preparation of dosage forms with many actives with complex and tailored release profiles that can address individual patient needs. AREAS COVERED: This comprehensive review provides an in-depth look into the several 3D printing technologies currently utilized in pharmaceutical research. Additionally, the review delves into vaginal anatomy and physiology, 3D-printed drug delivery systems for vaginal applications, the latest research studies, and the challenges of 3D printing technology and future possibilities. EXPERT OPINION: 3D printing technology can produce drug-delivery devices or implants optimized for vaginal applications, including vaginal rings, intra-vaginal inserts, or biodegradable microdevices loaded with drugs, all custom-tailored to deliver specific medications with controlled release profiles. However, though the potential of 3D printing in vaginal drug delivery is promising, there are still challenges and regulatory hurdles to overcome before these technologies can be widely adopted and approved for clinical use. Extensive research and testing are necessary to ensure safety, effectiveness, and biocompatibility.

3.
J Ocul Pharmacol Ther ; 40(1): 67-77, 2024.
Article in English | MEDLINE | ID: mdl-38117668

ABSTRACT

Purpose: Natamycin (NT) is used as a first-line antifungal prescription in the treatment of fungal keratitis (FK) and is commercially available as a 5% w/v ophthalmic suspension. NT shows poor water solubility and light sensitivity. Thus, the present investigation is aimed to enhance the fraction of NT in solution in the commercial formulation by adding cyclodextrins (CDs), thereby improving the delivery of the drug into deeper ocular tissues. Methods: The solubility of NT in different CDs, the impact of ultraviolet (UV) light exposure, stability at 4°C and 25°C, in vitro release, and ex vivo transcorneal permeation studies were performed. Results: NT exhibited the highest solubility (66-fold) in randomly methylated-ß-cyclodextrin (RM-ßCD) with hydroxypropyl-ßCD (HP-ßCD) showing the next highest solubility (54-fold) increase in comparison to market formulation Natacyn® as control. The stability of NT-CD solutions was monitored for 2 months (last-time point) at both storage conditions. The degradation profile of NT in NT-RM-ßCD and NT-HP-ßCD solutions under UV-light exposure followed first-order kinetics exhibiting half-lives of 1.2 h and 1.4 h, respectively, an almost 3-fold increase over the control solutions. In vitro release/diffusion studies revealed that suspensions containing RM-ßCD and HP-ßCD increased transmembrane flux significantly (3.1-fold) compared to the control group. The transcorneal permeability of NT from NT-RM-ßCD suspension exhibited an 8.5-fold (P < 0.05) improvement compared to Natacyn eyedrops. Furthermore, the addition of RM-ßCD to NT suspension increases the solubilized fraction of NT and enhances transcorneal permeability. Conclusion: Therefore, NT-RM-ßCD formulations could potentially lead to a decreased frequency of administration and significantly improved therapeutic outcomes in FK treatment.


Subject(s)
Corneal Ulcer , Cyclodextrins , Eye Infections, Fungal , Humans , Natamycin/pharmacology , Natamycin/therapeutic use , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Eye Infections, Fungal/drug therapy , Solubility , Corneal Ulcer/drug therapy , Suspensions
4.
Pharmaceutics ; 15(9)2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37765172

ABSTRACT

Conventional cyclodextrin complexation enhances the solubility of poorly soluble drugs but is solvent-intensive and environmentally unfavorable. This study evaluated solvent-free hot-melt extrusion (HME) for forming cyclodextrin inclusion complexes to improve the solubility and dissolution of ibuprofen (IBU). Molecular docking confirmed IBU's hosting in Hydroxypropyl-ß-cyclodextrin (HPß-CD), while phase solubility revealed its complex stoichiometry and stability. In addition, an 11 mm twin-screw co-rotating extruder with PVP VA-64 as an auxiliary substance aided the complex formation and extrusion. Using QbD and the Box-Behnken design, we studied variables (barrel temperature, screw speed, and polymer concentration) and their impact on solubility and dissolution. The high polymer concentration and high screw speeds positively affected the dependent variables. However, higher temperatures had a negative effect. The lowest barrel temperature set near the Tg of the polymer, when combined with high polymer concentrations, resulted in high torques in HME and halted the extrusion process. Therefore, the temperature and polymer concentration should be selected to provide sufficient melt viscosities to aid the complex formation and extrusion process. Studies such as DSC and XRD revealed the amorphous conversion of IBU, while the inclusion complex formation was demonstrated by ATR and NMR studies. The dissolution of ternary inclusion complexes (TIC) produced from HME was found to be ≥85% released within 30 min. This finding implied the high solubility of IBU, according to the US FDA 2018 guidance for highly soluble compounds containing immediate-release solid oral dosage forms. Overall, the studies revealed the effect of various process parameters on the formation of CD inclusion complexes via HME.

5.
Antibiotics (Basel) ; 12(8)2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37627738

ABSTRACT

Bacterial conjunctivitis (BC) entails inflammation of the ocular mucous membrane. Early effective treatment of BC can prevent the spread of the infection to the intraocular tissues, which could lead to bacterial endophthalmitis or serious visual disability. In 2003, gatifloxacin (GTX) eyedrops were introduced as a new broad-spectrum fluoroquinolone to treat BC. Subsequently, GTX use was extended to other ocular bacterial infections. However, due to precorneal loss and poor ocular bioavailability, frequent administration of the commercial eyedrops is necessary, leading to poor patient compliance. Thus, the goal of the current investigation was to formulate GTX in a lipid-based drug delivery system to overcome the challenges with the existing marketed eyedrops and, thus, improve the management of bacterial conjunctivitis. GTX-NLCs and SLNs were formulated with a hot homogenization-probe sonication method. The lead GTX-NLC formulation was characterized and assessed for in vitro drug release, antimicrobial efficacy (against methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa), and ex vivo permeation. The lead formulation exhibited desired physicochemical characteristics, an extended release of GTX over a 12 h period, and was stable over three months at the three storage conditions (refrigerated, room temperature, and accelerated). The transcorneal flux and permeability of GTX from the GTX-NLC formulation were 5.5- and 6.0-fold higher in comparison to the commercial eyedrops and exhibited a similar in vitro antibacterial activity. Therefore, GTX-NLCs could serve as an alternative drug delivery platform to improve treatment outcomes in BC.

6.
Article in English | MEDLINE | ID: mdl-37124158

ABSTRACT

Aqueous solubility is one of the key parameters for achieving the desired drug concentration in systemic circulation for better therapeutic outcomes. Carbamazepine (CBZ) is practically insoluble in water, is a BCS class II drug, and exhibits dissolution-dependent oral bioavailability. This study explored a novel application of hot-melt extrusion in the manufacture and development of a thermodynamically stable solid crystal suspension (SCS) to improve the solubility and dissolution rate of CBZ. The SCSs were prepared using sugar alcohols, such as mannitol or xylitol, as crystalline carriers. The drug-sugar blend was processed by hot melt extrusion up to 40 % (w/w) drug loading. The extruded SCS was evaluated for drug content, saturation solubility, differential scanning calorimetry (DSC), Fourier-transform infrared (FTIR) spectroscopy, powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), in vitro release, and stability studies. The physicochemical characterization revealed the highly crystalline existence of pure drug, pure carriers, and extruded SCS. FTIR analysis did not reveal any physical or chemical incompatibilities between the drug and sugar alcohols and showed a homogeneous CBZ distribution within respective crystalline carriers. The SEM micrographs of the solidified SCS revealed the presence of approximately 100 µm crystalline agglomerates. In vitro dissolution and solubility studies showed that the CBZ dissolution rate and solubility were improved significantly from both crystalline carriers for all tested drug loads. The SCSs showed no significant changes in drug content, in vitro release profiles, and thermal characteristics over 3 months of storage at accelerated stability conditions (40±2°C/75±5% RH). As a result, it can be inferred that the SCS strategy can be employed as a contemporary alternative technique to improve the dissolution rate of BCS class II drugs via HME technology.

7.
Pharm Res ; 40(6): 1519-1540, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37138135

ABSTRACT

Despite numerous research efforts, drug delivery through the oral route remains a major challenge to formulation scientists. The oral delivery of drugs poses a significant challenge because more than 40% of new chemical entities are practically insoluble in water. Low aqueous solubility is the main problem encountered during the formulation development of new actives and for generic development. A complexation approach has been widely investigated to address this issue, which subsequently improves the bioavailability of these drugs. This review discusses the various types of complexes such as metal complex (drug-metal ion), organic molecules (drug-caffeine or drug-hydrophilic polymer), inclusion complex (drug-cyclodextrin), and pharmacosomes (drug-phospholipids) that improves the aqueous solubility, dissolution, and permeability of the drug along with the numerous case studies reported in the literature. Besides improving solubility, drug-complexation provides versatile functions like improving stability, reducing the toxicity of drugs, increasing or decreasing the dissolution rate, and enhancing bioavailability and biodistribution. Apart, various methods to predict the stoichiometric ratio of reactants and the stability of the developed complex are discussed.


Subject(s)
Cyclodextrins , Pharmaceutical Preparations/chemistry , Tissue Distribution , Cyclodextrins/chemistry , Biological Availability , Solubility , Water/chemistry
8.
Int J Pharm X ; 5: 100156, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36636366

ABSTRACT

This work developed high drug-load pellets for colon targeting in minimal steps by coupling hot-melt extrusion (HME) with a die-surface cutting pelletizer, offering a potential continuous pellet manufacturing process. Ketoprofen (KTP) was selected as a model drug for this study due to its thermal stability and severe upper gastrointestinal side effects. Low and high methoxyl grade pectins were the enzyme-triggered release matrix, and hydroxypropyl methylcellulose (HME 4 M/HME 100LV) was used as a premature release-retarding agent. The powder X-ray diffraction technique and the differential scanning calorimetry results revealed that KTP exists in the solid-solution state within the polymeric matrix after the HME step. The scanning electron micrographs of the fabricated pellets showed a smooth surface without any cracks. The lead formulation showed the lowest premature drug release (∼13%) with an extended KTP release profile over a 24 h period in the presence and absence of the release-triggering enzyme. The lead formulation was stable for 3 months at accelerated stability conditions (40 °C/75 ± 5% RH) concerning drug content, in vitro release, and thermal characteristics. In summary, coupling HME and pelletization processes could be a promising technology for developing colon-targeted drug delivery systems.

9.
Nanotheranostics ; 7(1): 117-127, 2023.
Article in English | MEDLINE | ID: mdl-36593793

ABSTRACT

Background: Irbesartan (IR) is used in the treatment of hypertension, heart failure, and nephropathy in Type II diabetes. IR bioavailability is limited by poor solubility and presystemic metabolism. In our previous investigations, cyclodextrin (HPßCD) complexed solid lipid nanoparticles (SLNs) of IR were prepared, optimized, and characterized. The current study aimed to confirm the reproducibility of the previous methodology and to evaluate the pharmacokinetic (PK) and pharmacodynamic (PD) performance of the selected lead formulations in an experimental animal model. Methods: SLNs were prepared by hot homogenization followed by probe sonication with IR/HPßCD inclusion complex loaded into a solid lipid (Dynasan 112). SLNs were evaluated for physical characteristics, drug content, entrapment efficiency, in vitro release profile, and surface morphology. The pharmacokinetic and pharmacodynamic behavior of the SLNs were evaluated in Wistar rats. Results: Photon correlation spectroscopy, drug content, entrapment efficiency, and dissolution studies results were reproducible and consistent with our earlier investigation. PK studies showed 2.1-, 6.6-, and 9.9-fold improvement in the relative oral bioavailability of the drug from IR-HPßCD, IR-SLN, and IR-HPßCD-SLN formulations, respectively compared to IR suspension. However, IR-HPßCD-SLNs showed 1.5- and 4.7-fold improvement in the relative oral bioavailability of the drug compared to IR-SLN and IR-HPßCD formulations, respectively. PD studies in hypertensive Wistar rats showed a good control over systolic blood pressure for 48 h for SLN formulations compared to 2 h for IR suspension. However, the IR-HPßCD inclusion complex exhibited immediate antihypertensive activity (0.5 h) with a period of systolic blood pressure control similar to IR suspension. Conclusions: The current approach exhibited improved oral bioavailability along with improved and prolonged pharmacodynamic effect.


Subject(s)
Cyclodextrins , Diabetes Mellitus, Type 2 , Rats , Animals , Rats, Wistar , Biological Availability , Irbesartan/pharmacology , Lipids/chemistry , Drug Carriers/chemistry , 2-Hydroxypropyl-beta-cyclodextrin , Cyclodextrins/pharmacology , Reproducibility of Results
10.
Nanotheranostics ; 7(1): 70-89, 2023.
Article in English | MEDLINE | ID: mdl-36593800

ABSTRACT

Recent advances in drug delivery technologies utilizing a variety of carriers have resulted in a paradigm shift in the current approach to diagnosis and therapy. Mesoporous silica nanoparticles (MSNs) were developed in response to the need for materials with high thermal, chemical, and mechanical properties. The synthesis, ease of surface functionalization, tunable pore size, large surface area, and biocompatibility of MSNs make them useful in a variety of biomedical applications such as drug delivery, theranostics, and stem cell research. In addition, MSNs have a high capability of delivering actives ranging from small molecules such as drugs and amino acids to larger peptides, vaccines, and antibodies in general. Moreover, MSN-based transdermal delivery has sparked a lot of interest because of the increase in drug stability, permeation, and ease of functionalization. The functionalization of MSNs plays an important role in the efficient delivery of therapeutic agents in a highly controlled manner. This review introduced dermal and transdermal drug delivery systems, explained the anatomy of the skin, and summarized different barriers that affect the transdermal delivery of many therapeutic agents. In addition, the fundamentals of MSNs together with their physicochemical properties, synthesis approaches, raw materials used in their fabrication, and factors affecting their physicochemical properties will be covered. Moreover, the applications of MSNs in dermal and transdermal delivery, the biocompatibility of MSNs in terms of toxicity and safety, and biodistribution will be explained with the help of a detailed literature review. The review is covering the current and future perspectives of MSNs in the pharmaceutical field with therapeutic applications.


Subject(s)
Drug Carriers , Nanoparticles , Drug Carriers/chemistry , Drug Delivery Systems/methods , Nanoparticles/chemistry , Porosity , Silicon Dioxide/chemistry , Tissue Distribution
11.
Int J Pharm ; 631: 122533, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36566827

ABSTRACT

Coupling hot-melt extrusion (HME) with fused deposition modeling three-dimensional printing (FDM-3DP) can facilitate the fabrication of tailored, patient-centered, and complex-shaped ocular dosage forms. We fabricated ciprofloxacin HCl ocular inserts by coupling high-throughput, solvent-free, and continuous HME with FDM-3DP. Insert fabrication utilized biocompatible, biodegradable, bioadhesive Klucel™ hydroxypropyl cellulose polymer, subjected to distinct FDM-3DP processing parameters, utilizing a design of experiment approach to achieve a tailored release profile. We determined the drug content, thermal properties, drug-excipient compatibility, surface morphology, in vitro release, antibacterial activity, ex-vivo transcorneal permeation, and stability of inserts. An inverse relationship was noted between insert thickness, infill density, and drug release rate. The optimized design demonstrated an amorphous solid dispersion with an extended-release profile over 24 h, no physical or chemical incompatibility, excellent mucoadhesive strength, smooth surface, lack of bacterial growth (Pseudomonas aeruginosa) in all release samples, and prolonged transcorneal drug flux compared with commercial eye drops and immediate-release inserts. The designed inserts were stable at room temperature considering drug content, thermal behavior, and release profile over three months. Overall, the fabricated insert could reduce administration frequency to once-daily dosing, affording a promising topical delivery platform with prolonged antibacterial activity and superior therapeutic outcomes for managing ocular bacterial infections.


Subject(s)
Ciprofloxacin , Polymers , Humans , Tablets/chemistry , Ciprofloxacin/pharmacology , Drug Liberation , Polymers/chemistry , Printing, Three-Dimensional , Anti-Bacterial Agents/pharmacology , Technology, Pharmaceutical/methods
12.
Pharmaceutics ; 14(12)2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36559077

ABSTRACT

Cannabidiol (CBD) is the major non-psychoactive and most widely studied of the cannabinoid constituents and has great therapeutic potential in a variety of diseases. However, contradictory reports in the literature with respect to CBD's effect on intraocular pressure (IOP) have raised concerns and halted research exploring its use in ocular therapeutics. Therefore, the current investigation aimed to further evaluate CBD's impact on the IOP in the rabbit model. CBD nanoemulsions, containing Carbopol® 940 NF as a mucoadhesive agent (CBD-NEC), were prepared using hot-homogenization followed by probe sonication. The stability of the formulations post-moist-heat sterilization, in terms of physical and chemical characteristics, was studied for three different storage conditions. The effect of the formulation on the intraocular pressure (IOP) profile in normotensive Dutch Belted male rabbits was then examined. The lead CBD-NEC formulation (1% w/v CBD) exhibited a globule size of 259 ± 2.0 nm, 0.27 ± 0.01 PDI, and 23.2 ± 0.4 cP viscosity, and was physically and chemically stable for one month (last time point tested) at 4 °C, 25 °C, and 40 °C. CBD-NEC significantly lowered the IOP in the treated eyes for up to 360 min, with a peak drop in IOP of 4.5 mmHg observed at the 150 min time point, post-topical application. The IOP of the contralateral eye (untreated) was also observed to be lowered significantly, but the effect lasted up to the 180 min time point only. Overall, topically administered CBD, formulated in a mucoadhesive nanoemulsion formulation, reduced the IOP in the animal model studied. The results support further exploration of CBD as a therapeutic option for various inflammation-based ocular diseases.

13.
Cells ; 11(15)2022 08 06.
Article in English | MEDLINE | ID: mdl-35954282

ABSTRACT

Wound healing is highly specialized dynamic multiple phase process for the repair of damaged/injured tissues through an intricate mechanism. Any failure in the normal wound healing process results in abnormal scar formation, and chronic state which is more susceptible to infections. Chronic wounds affect patients' quality of life along with increased morbidity and mortality and are huge financial burden to healthcare systems worldwide, and thus requires specialized biomedical intensive treatment for its management. The clinical assessment and management of chronic wounds remains challenging despite the development of various therapeutic regimens owing to its painstakingly long-term treatment requirement and complex wound healing mechanism. Various conventional approaches such as cell therapy, gene therapy, growth factor delivery, wound dressings, and skin grafts etc., are being utilized for promoting wound healing in different types of wounds. However, all these abovementioned therapies are not satisfactory for all wound types, therefore, there is an urgent demand for the development of competitive therapies. Therefore, there is a pertinent requirement to develop newer and innovative treatment modalities for multipart therapeutic regimens for chronic wounds. Recent developments in advanced wound care technology includes nanotherapeutics, stem cells therapy, bioengineered skin grafts, and 3D bioprinting-based strategies for improving therapeutic outcomes with a focus on skin regeneration with minimal side effects. The main objective of this review is to provide an updated overview of progress in therapeutic options in chronic wounds healing and management over the years using next generation innovative approaches. Herein, we have discussed the skin function and anatomy, wounds and wound healing processes, followed by conventional treatment modalities for wound healing and skin regeneration. Furthermore, various emerging and innovative strategies for promoting quality wound healing such as nanotherapeutics, stem cells therapy, 3D bioprinted skin, extracellular matrix-based approaches, platelet-rich plasma-based approaches, and cold plasma treatment therapy have been discussed with their benefits and shortcomings. Finally, challenges of these innovative strategies are reviewed with a note on future prospects.


Subject(s)
Quality of Life , Wound Healing , Bandages , Humans , Skin/injuries , Skin Physiological Phenomena
14.
Strabismus ; 30(3): 144-149, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35815466

ABSTRACT

BACKGROUND: Anomalous ocular muscle insertions are a rare cause of ocular motility disturbances. METHODS: We report the clinical presentation and the intraoperative findings of two cases with an abnormally nasally inserted superior oblique tendons presenting with a Brown syndrome-like clinical picture. RESULTS: Case no 1 was a 5-year-old girl presenting with a chin up position. There was bilateral limitation of elevation in adduction, -4 on the right side and -3 on the left side with +1 downshoot on adduction on either side Patient was orthotropic in down-gaze with small V-pattern exotropia. Case no 2 was a 4-year-old boy presenting with an esotropia of 35Δ that was partially corrected with his spectacles to 20Δ. Ductions showed -4 defective elevation in adduction of the right eye. Surgical exploration in both cases revealed abnormal nasal insertion of the superior oblique tendons. The line of insertion had a convexity facing superonasally. The posterior fibers were inserted 7-8 mm posterior and just nasal to the nasal border of the superior rectus insertion, while the anterior fibers were shorter and inserted 5 mm nasal and 4 mm posterior to the nasal edge of superior rectus insertion. In both cases, there was an improvement in the elevation on adduction after superior oblique lengthening. CONCLUSIONS: Abnormal nasal insertion of the superior oblique muscle enhances the depressor effect of the muscle and can create a Brown-like picture.


Subject(s)
Exotropia , Ocular Motility Disorders , Male , Female , Humans , Child, Preschool , Oculomotor Muscles/surgery , Oculomotor Muscles/abnormalities , Ocular Motility Disorders/diagnosis , Ocular Motility Disorders/etiology , Ocular Motility Disorders/surgery , Exotropia/surgery , Tendons/surgery , Eye Movements
15.
Pharmaceutics ; 14(6)2022 Jun 12.
Article in English | MEDLINE | ID: mdl-35745818

ABSTRACT

Ocular bacterial infections can lead to serious visual disability without proper treatment. Moxifloxacin (MOX) has been approved by the US Food and Drug Administration as a monotherapy for ocular bacterial infections and is available commercially as an ophthalmic solution (0.5% w/v). However, precorneal retention, drainage, and low bioavailability remain the foremost challenges associated with current commercial eyedrops. With this study, we aimed to design a MOX-loaded nanoemulsion (NE; MOX-NE) with mucoadhesive agents (MOX-NEM) to sustain MOX release, as well as to overcome the potential drawbacks of the current commercial ophthalmic formulation. MOX-NE and MOX-NEM formulations were prepared by hot homogenization coupled with probe sonication technique and subsequently characterized. The lead formulations were further evaluated for in vitro release, ex vivo transcorneal permeation, sterilization, and antimicrobial efficacy studies. Commercial MOX ophthalmic solution was used as a control. The lead formulations showed the desired physicochemical properties and viscosity. All lead formulations showed sustained release profiles a period of more than 12 h. Filtered and autoclaved lead formulations were stable for one month (the last time point tested) under refrigeration and at room temperature. Ex vivo transcorneal permeation studies revealed a 2.1-fold improvement in MOX permeation of the lead MOX-NE formulation compared with Vigamox® eyedrops. However, MOX-NEM formulations showed similar flux and permeability coefficients to those of Vigamox® eyedrops. The lead formulations showed similar in vitro antibacterial activity as the commercial eyedrops and crude drug solution. Therefore, MOX-NE and MOX-NEM formulations could serve as effective delivery vehicles for MOX and could improve treatment outcomes in different ocular bacterial infections.

16.
Int J Pharm ; 624: 121951, 2022 Aug 25.
Article in English | MEDLINE | ID: mdl-35753536

ABSTRACT

Amorphous solid dispersions (ASDs) have gained attention as a formulation strategy in recent years, with the potential to improve the apparent solubility and, hence, the oral bioavailability of poorly soluble drugs. The process of formulating ASDs is commonly faced with challenges owing to the intrinsic physical and chemical instability of the initial amorphous form and the long-term physical stability of drug formulations. Numerous research publications on hot-melt extrusion (HME) technology have demonstrated that it is the most efficient approach for manufacturing reasonably stable ASDs. The HME technique has been established as a faster scale-up production strategy for formulation evaluation and has the potential to minimize the time to market. Thermodynamic evaluation and theoretical predictions of drug-polymer solubility and miscibility may assist to reduce the product development cost by HME. This review article highlights robust and established prediction theories and experimental approaches for the selection of polymeric carriers for the development of hot melt extrusion based stable amorphous solid dispersions (ASDs). In addition, this review makes a significant contribution to the literature as a pilot guide for ASD assessment, as well as to confirm the drug-polymer compatibility and physical stability of HME-based formulations.


Subject(s)
Chemistry, Pharmaceutical , Hot Melt Extrusion Technology , Chemistry, Pharmaceutical/methods , Drug Compounding/methods , Hot Temperature , Polymers , Solubility
17.
Int J Nanomedicine ; 17: 2283-2299, 2022.
Article in English | MEDLINE | ID: mdl-35611213

ABSTRACT

Introduction: Untreated ocular infections can damage the unique fine structures of the eye with possible visual impairments and blindness. Ciprofloxacin (CIP) ophthalmic solution is prescribed as first-line therapy in ocular bacterial infections. Natamycin (NT) ophthalmic suspension is one of the progenitors in ocular antifungal therapy. Nanostructured lipid carriers (NLCs) have been widely examined for ocular penetration enhancement and distribution to deeper ocular tissues. The objective of the current study was to prepare NLCs loaded with a combination of CIP and NT (CIP-NT-NLCs) and embed them in an in-situ gelling system (CIP-NT-NLCs-IG). This novel formulation will target the co-delivery of CIP and NT for the treatment of mixed ocular infections or as empirical treatment in case of limited access to healthcare diagnostic services. Methods: CIP-NT-NLC and CIP-NT-NLC-IG formulations were evaluated based on physicochemical characteristics, in vitro release, and ex vivo transcorneal permeation studies and compared against commercial CIP and NT ophthalmic eye drops. Results and Discussion: NLCs formulation (0.1% CIP and 0.3% NT) showed particle size, polydispersity index, and zeta potential of 196.2 ± 1.2 nm, 0.43 ± 0.06, and -28.1 ± 1.4 mV, respectively. Moreover, CIP-NT-NLCs showed entrapment efficiency of 80.9 ± 2.9 and 98.7 ± 1.9% for CIP and NT, respectively. CIP-NT-NLCs-IGformulation with 0.2% w/v gellan gum demonstrated the most favorable viscoelastic characteristics for ocular application. CIP-NT-NLCs and CIP-NT-NLCs-IG formulations exhibited a sustained release pattern for both drugs over 24 h. Moreover, CIP-NT-NLCs and CIP-NT-NLC-IG formulations showed 4.0- and 2.2-folds, and 5.0- and 2.5-folds enhancement in ex vivo transcorneal permeability of CIP and NT, respectively, compared to the control formulations. Conclusion: The results suggest that this dual nanoparticulate-based in-situ gelling drug delivery system can serve as a promising topical delivery platform for the treatment of ocular infections.


Subject(s)
Eye Infections , Nanostructures , Ciprofloxacin , Drug Carriers/chemistry , Drug Liberation , Gels/chemistry , Humans , Lipids/chemistry , Nanostructures/chemistry , Natamycin , Ophthalmic Solutions , Particle Size
18.
Molecules ; 26(24)2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34946619

ABSTRACT

Irbesartan (IR) is an angiotensin II receptor antagonist drug with antihypertensive activity. IR bioavailability is limited due to poor solubility and first-pass metabolism. The current investigation aimed to design, develop, and characterize the cyclodextrin(s) (CD) complexed IR (IR-CD) loaded solid lipid nanoparticles (IR-CD-SLNs) for enhanced solubility, sustained release behavior, and subsequently improved bioavailability through oral administration. Based on phase solubility studies, solid complexes were prepared by the coacervation followed by lyophilization method and characterized for drug content, inclusion efficiency, solubility, and in vitro dissolution. IR-CD inclusion complexes demonstrated enhancement of solubility and dissolution rate of IR. However, the dissolution efficiency was significantly increased with hydroxypropyl-ßCD (HP-ßCD) inclusion complex than beta-CD (ßCD). SLNs were obtained by hot homogenization coupled with the ultrasonication method with IR/HP-ßCD inclusion complex loaded into Dynasan 112 and glycerol monostearate (GMS). SLNs were evaluated for physicochemical characteristics, in vitro release, differential scanning calorimetry (DSC), powder X-ray diffractometry (PXRD), and physical stability at room temperature for two months. The optimized SLNs formulation showed particle size, polydispersity index, zeta potential, assay, and entrapment efficiency of 257.6 ± 5.1 nm, 0.21 ± 0.03, -30.5 ± 4.1 mV, 99.8 ± 2.5, and 93.7 ± 2.5%, respectively. IR-CD-SLN and IR-SLN dispersions showed sustained release of IR compared to the IR-CD inclusion complexes. DSC results complimented PXRD results by the absence of IR endothermic peak. Optimized IR-CD complex, IR-SLN, and IR-CD-SLN formulations were stable for two months at room temperature. Thus, the current IR oral formulation may exhibit improved oral bioavailability and prolonged antihypertensive activity, which may improve therapeutic outcomes in the treatment of hypertension and heart failure.


Subject(s)
Cyclodextrins/chemistry , Drug Design , Irbesartan/chemistry , Liposomes/chemistry , Nanoparticles/chemistry , Administration, Oral , Drug Compounding
19.
Pharmaceuticals (Basel) ; 14(3)2021 Mar 03.
Article in English | MEDLINE | ID: mdl-33802394

ABSTRACT

Bacterial keratitis (BK) is a critical ocular infection that can lead to serious visual disability. Ciprofloxacin (CIP), moxifloxacin (MOX), and levofloxacin (LFX) have been accepted as monotherapies by the US Food and Drug Administration for BK treatment. CIP is available commercially at 0.3% w/v concentration as an ophthalmic solution and as an ointment for ocular delivery. Because of solubility issues at physiological pH, CIP precipitation can occur at the corneal surface post instillation of the solution dosage form. Consequently, the ocular bioavailability of CIP is reduced. The ointment dosage form is associated with side effects such as blurred vision, itching, redness, eye discomfort, and eye dryness. This study aimed to design a CIP loaded nanoemulsion (NE; CIP-NE) to facilitate drug penetration into the corneal layers for improved therapeutic outcomes as well as to overcome the drawbacks of the current commercial ophthalmic formulations. CIP-NE formulations were prepared by hot homogenization and ultrasonication, using oleic acid (CIP-O-NE) and Labrafac® Lipophile WL 1349 (CIP-L-NE) as the oily phase, and Tween® 80 and Poloxamer 188 as surfactants. Optimized CIP-NE was further evaluated with respect to in vitro release, ex vivo transcorneal permeation, and moist heat sterilization process, using commercial CIP ophthalmic solution as a control. Optimized CIP-O-NE formulation showed a globule size, polydispersity index, and zeta potential of 121.6 ± 1.5 nm, 0.13 ± 0.01, and -35.1 ± 2.1 mV, respectively, with 100.1 ± 2.0% drug content and was spherical in shape. In vitro release and ex vivo transcorneal permeation studies exhibited sustained release and a 2.1-fold permeation enhancement, respectively, compared with commercial CIP ophthalmic solution. Autoclaved CIP-O-NE formulation was found to be stable for one month (last time-point tested) at refrigerated and room temperature. Therefore, CIP-NE formulation could serve as an effective delivery system for CIP and could improve treatment outcomes in BK.

20.
Chem Phys Lipids ; 233: 104981, 2020 11.
Article in English | MEDLINE | ID: mdl-33031802

ABSTRACT

Ketoconazole (KZ) is broad spectrum antifungal drug, used for the treatment of fungal infections. KZ's clinical topical use has been associated with some adverse effects in healthy adults particularly local reactions, such as stinging, severe irritation, and pruritus. However, bioavailability of KZ after oral administration is low from tablets due to its low aqueous solubility. The objective of this investigation was development and characterization of KZ-containing solid lipid nanoparticles (KZ-SLNs) and SLN-containing hydrogel (KZ-SLN-H) for oral and topical delivery of KZ. KZ-SLNs were prepared using homogenization-sonication method. Optimal KZ-SLN formulation was selected based on physicochemical and in-vitro release studies. Optimized KZ-SLN converted to KZ-SLN hydrogel (KZ-SLN-H) using gelling polymers and optimized with rheological and in-vitro studies. Further, optimized KZ-SLN and KZ-SLN-H formulations evaluated for crystallinity, morphology, stability, ex-vivo and in-vivo pharmacokinetic (PK) studies in rats, comparison with KZ suspension (KZ-S) and KZ-S hydrogel (KZ-SH). Optimized KZ-SLN formulation showed desirable characters. KZ-SLN and KZ-SLN-H formulations exhibited spherical shape, converted to amorphous, sustained release behaviour and enhanced permeability (p < 0.05). Moreover, both formulations were stable for three months at 4 °C and 25 °C. PK studies revealed 1.9 and 1.5-folds, 3.5 and 2.8-folds enhancement of bioavailability of optimized KZ-SLN and KZ-SLN-H formulations (p < 0.05) compared with KZ-S and KZ-SH formulations, respectively. Overall, SLN and SLN-H formulations could be considered as an efficient delivery vehicles for KZ through oral and topical administration for better control over topical and systemic fungal infections.


Subject(s)
Antifungal Agents/pharmacology , Hydrogels/pharmacology , Ketoconazole/pharmacology , Lipids/chemistry , Mycoses/drug therapy , Nanoparticles/chemistry , Administration, Oral , Administration, Topical , Animals , Antifungal Agents/administration & dosage , Antifungal Agents/chemistry , Candida albicans/drug effects , Colloids/administration & dosage , Colloids/chemistry , Hydrogels/administration & dosage , Hydrogels/chemistry , Ketoconazole/administration & dosage , Ketoconazole/chemistry , Lipids/administration & dosage , Male , Microbial Sensitivity Tests , Nanoparticles/administration & dosage , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...