Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 176, 2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36635283

ABSTRACT

Photonic qubits should be controllable on-chip and noise-tolerant when transmitted over optical networks for practical applications. Furthermore, qubit sources should be programmable and have high brightness to be useful for quantum algorithms and grant resilience to losses. However, widespread encoding schemes only combine at most two of these properties. Here, we overcome this hurdle by demonstrating a programmable silicon nano-photonic chip generating frequency-bin entangled photons, an encoding scheme compatible with long-range transmission over optical links. The emitted quantum states can be manipulated using existing telecommunication components, including active devices that can be integrated in silicon photonics. As a demonstration, we show our chip can be programmed to generate the four computational basis states, and the four maximally-entangled Bell states, of a two-qubits system. Our device combines all the key properties of on-chip state reconfigurability and dense integration, while ensuring high brightness, fidelity, and purity.

2.
Phys Rev Lett ; 127(3): 033901, 2021 Jul 16.
Article in English | MEDLINE | ID: mdl-34328749

ABSTRACT

We report on a signal-to-noise ratio characterizing the generation of identical photon pairs of more than 4 orders of magnitude in a ring resonator system. Parasitic noise, associated with single-pump spontaneous four-wave mixing, is essentially eliminated by employing a novel system design involving two resonators that are linearly uncoupled but nonlinearly coupled. This opens the way to a new class of integrated devices exploiting the unique properties of identical photon pairs in the same optical mode.

3.
Opt Express ; 27(21): 30726-30740, 2019 Oct 14.
Article in English | MEDLINE | ID: mdl-31684316

ABSTRACT

Efficient nonlinear phenomena in integrated waveguides imply the realization in a nonlinear material of tightly confining waveguides sustaining guided modes with a small effective area with ultra-low propagation losses as well as high-power damage thresholds. However, when the waveguide cross-sectional dimensions keep shrinking, propagation losses and the probability of failure events tend to increase dramatically. In this work, we report both the fabrication and testing of high-confinement, ultralow-loss silicon nitride waveguides and resonators showing average attenuation coefficients as low as ∼3 dB/m across the S-, C-, and L bands for 1.6-µm-width × 800-nm-height dimensions, with intrinsic quality factors approaching ∼107 in the C band. The present technology results in very high cross-wafer device performance uniformities, low thermal susceptibility, and high power damage thresholds. In particular, we developed here an optimized fully subtractive process introducing a novel chemical-physical multistep annealing and encapsulation fabrication method, resulting in high quality Si3N4-based photonic integrated circuits for energy-efficient nonlinear photonics and quantum optics.

SELECTION OF CITATIONS
SEARCH DETAIL
...