Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Soft Matter ; 16(17): 4274-4282, 2020 May 07.
Article in English | MEDLINE | ID: mdl-32307507

ABSTRACT

The fundamental and practical importance of particle stabilization has motivated various characterization methods for studying polymer brushes on particle surfaces. In this work, we show how one can perform sensitive measurements of neutral polymer coating on colloidal particles using a commercial zetameter and salt solutions. By systematically varying the Debye length, we study the mobility of the polymer-coated particles in an applied electric field and show that the electrophoretic mobility of polymer-coated particles normalized by the mobility of non-coated particles is entirely controlled by the polymer brush and independent of the native surface charge, here controlled with pH, or the surface-ion interaction. Our result is rationalized with a simple hydrodynamic model, allowing for the estimation of characteristics of the polymer coating: the brush length L, and the Brinkman length ξ, determined by its resistance to flows. We demonstrate that the Debye layer provides a convenient and faithful probe to the characterization of polymer coatings on particles. Because the method simply relies on a conventional zetameter, it is widely accessible and offers a practical tool to rapidly probe neutral polymer brushes, an asset in the development and utilization of polymer-coated colloidal particles.

2.
J Phys Chem B ; 122(18): 4931-4936, 2018 05 10.
Article in English | MEDLINE | ID: mdl-29665683

ABSTRACT

The controlled shaping and surface functionalization of colloidal particles has provided opportunities for the development of new materials and responsive particles. The possibility of creating hollow particles with semipermeable walls allows modulating molecular transport properties on colloidal length scales. While shapes and sizes can typically be observed by optical means, the underlying chemical and physical properties are often invisible. Here, we present measurements of cross-membrane transport via pulsed field gradient NMR in packings of hollow colloidal particles. The work is conducted using a systematic selection of particle sizes, wall permeabilities, and osmotic pressures and allows tracking organic molecules as well as ions. It is also shown that, while direct transport of molecules can be measured, indirect markers can be obtained for invisible species via the osmotic pressure as well. The cross-membrane transport information is important for applications in nanoconfinement, nanofiltration, nanodelivery, or nanoreactor devices.

3.
Nat Commun ; 7: 12216, 2016 07 18.
Article in English | MEDLINE | ID: mdl-27426418

ABSTRACT

The ability to reconfigure elementary building blocks from one structure to another is key to many biological systems. Bringing the intrinsic adaptability of biological systems to traditional synthetic materials is currently one of the biggest scientific challenges in material engineering. Here we introduce a new design concept for the experimental realization of self-assembling systems with built-in shape-shifting elements. We demonstrate that dewetting forces between an oil phase and solid colloidal substrates can be exploited to engineer shape-shifting particles whose geometry can be changed on demand by a chemical or optical signal. We find this approach to be quite general and applicable to a broad spectrum of materials, including polymers, semiconductors and magnetic materials. This synthetic methodology can be further adopted as a new experimental platform for designing and rapidly prototyping functional colloids, such as reconfigurable micro swimmers, colloidal surfactants and switchable building blocks for self-assembly.

SELECTION OF CITATIONS
SEARCH DETAIL
...