Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Eur J Hum Genet ; 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38316952

ABSTRACT

Heterozygous PRRT2 variants are frequently implicated in Self-limited Infantile Epilepsy, whereas homozygous variants are so far linked to severe presentations including developmental and epileptic encephalopathy, movement disorders, and intellectual disability. In a study aiming to explore the genetics of epilepsy in the Sudanese population, we investigated several families including a consanguineous family with three siblings diagnosed with self-limited infantile epilepsy. We evaluated both dominant and recessive inheritance using whole exome sequencing and genomic arrays. We identified a pathogenic homozygous splice-site variant in the first intron of PRRT2 [NC_000016.10(NM_145239.3):c.-65-1G > A] that segregated with the phenotype in this family. This work taps into the genetics of epilepsy in an underrepresented African population and suggests that the phenotypes of homozygous PRRT2 variants may include milder epilepsy presentations without movement disorders.

2.
Metabolites ; 13(8)2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37623877

ABSTRACT

The presence of esterase enzymes in human skin and their role in drug metabolism has been reported, but their distribution in the various skin layers and the relative contributions of those layers to metabolism is poorly defined. To gain further insight into esterase distribution, we performed in vitro skin permeation of a commercial 28.3% methyl salicylate (MeSA) cream (Metsal™) in Franz diffusion cells, using a range of human skin membranes, all from the same donor. The membranes were viable epidermis separated by a dispase II enzymatic method, heat separated epidermis, dermatomed skin, and dermis separated by a dispase II enzymatic method. Methyl salicylate and its metabolite, salicylic acid (SA), were measured by high-performance liquid chromatography. Alpha naphthyl acetate and Hematoxylin and Eosin staining provided qualitative estimations of esterase distribution in these membranes. The permeation of methyl salicylate after 24 h was similar across all membranes. Salicylic acid formation and permeation were found to be similar in dermatomed skin and dermis, suggesting dermal esterase activity. These results were supported by the staining studies, which showed strong esterase activity in the dermal-epidermal junction region of the dermis. In contrast with high staining of esterase activity in the stratum corneum and viable epidermis, minimal stained and functional esterase activity was found in heat-separated and dispase II-prepared epidermal membranes. The results are consistent with dispase II digesting hemidesmosomes, penetrating the epidermis, and affecting epidermal esterases but not those in the dermis. Accordingly, whilst the resulting dispase II-generated dermal membranes may be used for in vitro permeation tests (IVPT) involving esterase-based metabolic studies, the dispase II-generated epidermal membranes are not suitable for this purpose.

3.
Sci Rep ; 13(1): 1744, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36797274

ABSTRACT

The COVID-19 pandemic has exposed the vulnerability of ethnic minorities again. Health inequity within ethnic minorities has been explained by factors such as higher prevalence of underlying disease, restricted access to care, and lower vaccination rates. In this study, we investigated the effect of cultural tailoring of communicators and media outlets, respectively, on vaccine willingness in an influenza vaccination campaign in the Netherlands. A total of 1226 participants were recruited from two culturally non-tailored media outlets (Dutch newspaper and Facebook), and one media outlet tailored to a large community in the Netherlands with Indian ancestry. The participants from all three media outlets were randomly exposed to a vaccination awareness video delivered by a physician with an Indian or Dutch background, followed by an online survey. Cultural tailoring compared to cultural non-tailoring of communicators showed no difference in improvement of vaccine willingness (13.9% vs. 20.7% increment, respectively, p = 0.083). However, the media outlet tailored to the community with Indian ancestry, resulted in a higher improvement of vaccine willingness compared to non-tailored media outlets (46.7% vs. 14.7% increment, respectively, p < 0.001, unadjusted OR = 5.096). These results suggest that cultural tailoring of media outlets may be critical to effectively reach out to ethnic minorities to help optimize vaccination rates and improve general health.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Humans , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Pandemics/prevention & control , Immunization Programs , Vaccination
4.
Neth Heart J ; 29(11): 545-550, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34648125

ABSTRACT

The COVID-19 pandemic has spurred clinical and scientific interest in the cardiology community because of the significantly enhanced vulnerability of patients with underlying cardiac diseases. COVID-19 vaccination is therefore of vital importance to the patients we see in our clinics and hospitals every day and should be promoted by the medical community, especially cardiologists. In view of vaccine-preventable diseases, the association between influenza and cardiovascular complications has been widely investigated. Several studies have found a substantially elevated risk of hospital admission for acute myocardial infarction in the first 7 days after laboratory-confirmed influenza, with incidence ratios ranging from 6.05-8.89. The effectiveness of the influenza vaccine to protect against acute myocardial infarction is about 29%. This effectiveness is comparable to or even better than that of existing secondary preventive therapies, such as statins (prevention rate approximately 36%), antihypertensives (prevention rate approximately 15-18%), and smoking cessation (prevention rate approximately 26%). As the influenza season is rapidly approaching, this Point of View article serves as a call to action: Cardiologists should promote influenza vaccination and actively advice their patients to get the seasonal influenza vaccination.

5.
Elife ; 102021 05 24.
Article in English | MEDLINE | ID: mdl-34028356

ABSTRACT

ESCRT-III polymerization is required for all endosomal sorting complex required for transport (ESCRT)-dependent events in the cell. However, the relative contributions of the eight ESCRT-III subunits differ between each process. The minimal features of ESCRT-III proteins necessary for function and the role for the multiple ESCRT-III subunits remain unclear. To identify essential features of ESCRT-III subunits, we previously studied the polymerization mechanisms of two ESCRT-III subunits Snf7 and Vps24, identifying the association of the helix-4 region of Snf7 with the helix-1 region of Vps24 (Banjade et al., 2019a). Here, we find that mutations in the helix-1 region of another ESCRT-III subunit Vps2 can functionally replace Vps24 in Saccharomyces cerevisiae. Engineering and genetic selections revealed the required features of both subunits. Our data allow us to propose three minimal features required for ESCRT-III function - spiral formation, lateral association of the spirals through heteropolymerization, and binding to the AAA + ATPase Vps4 for dynamic remodeling.


Subject(s)
Endosomal Sorting Complexes Required for Transport/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Endosomal Sorting Complexes Required for Transport/chemistry , Endosomal Sorting Complexes Required for Transport/genetics , Gene Expression Regulation, Fungal , Mutation , Protein Binding , Protein Conformation, alpha-Helical , Protein Interaction Domains and Motifs , Protein Transport , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Structure-Activity Relationship
6.
Methods Appl Fluoresc ; 8(3): 034003, 2020 Jul 07.
Article in English | MEDLINE | ID: mdl-32422610

ABSTRACT

Multiphoton fluorescence lifetime microscopy has revolutionized studies of pathophysiological and xenobiotic dynamics, enabling the spatial and temporal quantification of these processes in intact organs in vivo. We have previously used multiphoton fluorescence lifetime microscopy to characterise the morphology and amplitude weighted mean fluorescence lifetime of the endogenous fluorescent metabolic cofactor nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) of mouse livers in vivo following induction of various disease states. Here, we extend the characterisation of liver disease models by using nonlinear regression to estimate the unbound, bound fluorescence lifetimes for NAD(P)H, flavin adenine dinucleotide (FAD), along with metabolic ratios and examine the impact of using multiple segmentation methods. We found that NAD(P)H amplitude ratio, and fluorescence lifetime redox ratio can be used as discriminators of diseased liver from normal liver. The redox ratio provided a sensitive measure of the changes in hepatic fibrosis and biliary fibrosis. Hepatocellular carcinoma was associated with an increase in spatial heterogeneity and redox ratio coupled with a decrease in mean fluorescence lifetime. We conclude that multiphoton fluorescence lifetime microscopy parameters and metabolic ratios provided insights into the in vivo redox state of diseased compared to normal liver that were not apparent from a global, mean fluorescence lifetime measurement alone.


Subject(s)
Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Microscopy, Fluorescence, Multiphoton , Animals , Carbon Tetrachloride , Disease Models, Animal , Liver Cirrhosis/chemically induced , Mice , Mice, Knockout , Oxidation-Reduction
8.
Pharmaceutics ; 11(12)2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31805660

ABSTRACT

Curcumin is a natural product with chemopreventive and other properties that are potentially useful in treating skin diseases, including psoriasis and melanoma. However, because of the excellent barrier function of the stratum corneum and the relatively high lipophilicity of curcumin (log P 3.6), skin delivery of curcumin is challenging. We used the principles of a Quality by Design (QbD) approach to develop nanoemulsion formulations containing biocompatible components, including Labrasol and Lecithin as surfactants and Transcutol and ethanol as cosurfactants, to enhance the skin delivery of curcumin. The nanoemulsions were characterised by cryo-SEM, Zeta potential, droplet size, pH, electrical conductivity (EC) and viscosity (η). Physicochemical long-term stability (6 months) was also investigated. The mean droplet sizes as determined by dynamic light scattering (DLS) were in the lower submicron range (20-50 nm) and the average Zeta potential values were low (range: -0.12 to -2.98 mV). Newtonian flow was suggested for the nanoemulsions investigated, with dynamic viscosity of the nanoemulsion formulations ranging from 5.8 to 31 cP. The droplet size of curcumin loaded formulations remained largely constant over a 6-month storage period. The inclusion of terpenes to further enhance skin permeation was also examined. All nanoemulsions significantly enhanced the permeation of curcumin through heat-separated human epidermal membranes, with the greatest effect being a 28-fold increase in maximum flux (Jmax) achieved with a limonene-based nanoemulsion, compared to a 60% ethanol in water control vehicle. The increases in curcumin flux were associated with increased skin diffusivity. In summary, we demonstrated the effectiveness of nanoemulsions for the skin delivery of the lipophilic active compound curcumin, and elucidated the mechanism of permeation enhancement. These formulations show promise as delivery vehicles for curcumin to target psoriasis and skin cancer, and more broadly for other skin delivery applications.

9.
Elife ; 82019 06 27.
Article in English | MEDLINE | ID: mdl-31246173

ABSTRACT

Self-assembly of ESCRT-III complex is a critical step in all ESCRT-dependent events. ESCRT-III hetero-polymers adopt variable architectures, but the mechanisms of inter-subunit recognition in these hetero-polymers to create flexible architectures remain unclear. We demonstrate in vivo and in vitro that the Saccharomyces cerevisiae ESCRT-III subunit Snf7 uses a conserved acidic helix to recruit its partner Vps24. Charge-inversion mutations in this helix inhibit Snf7-Vps24 lateral interactions in the polymer, while rebalancing the charges rescues the functional defects. These data suggest that Snf7-Vps24 assembly occurs through electrostatic interactions on one surface, rather than through residue-to-residue specificity. We propose a model in which these cooperative electrostatic interactions in the polymer propagate to allow for specific inter-subunit recognition, while sliding of laterally interacting polymers enable changes in architecture at distinct stages of vesicle biogenesis. Our data suggest a mechanism by which interaction specificity and polymer flexibility can be coupled in membrane-remodeling heteropolymeric assemblies.


Subject(s)
Biopolymers/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Static Electricity , Amino Acid Sequence , Endosomal Sorting Complexes Required for Transport/chemistry , Endosomal Sorting Complexes Required for Transport/genetics , Mutation/genetics , Protein Binding , Protein Structure, Secondary , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Suppression, Genetic
10.
J Control Release ; 306: 59-68, 2019 07 28.
Article in English | MEDLINE | ID: mdl-31121279

ABSTRACT

Skin-targeting microscale medical devices are becoming popular for therapeutic delivery and diagnosis. We used cryo-SEM, fluorescence lifetime imaging microscopy (FLIM), autofluorescence imaging microscopy and inflammatory response to study the puncturing and recovery of human skin ex vivo and in vivo after discretised puncturing by a microneedle array (Nanopatch®). Pores induced by the microprojections were found to close by ~25% in diameter within the first 30 min, and almost completely close by ~6 h. FLIM images of ex vivo viable epidermis showed a stable fluorescence lifetime for unpatched areas of ~1000 ps up to 24 h. Only the cells in the immediate puncture zones (in direct contact with projections) showed a reduction in the observed fluorescence lifetimes to between ~518-583 ps. The ratio of free-bound NAD(P)H (α1/α2) in unaffected areas of the viable epidermis was ~2.5-3.0, whereas the ratio at puncture holes was almost double at ~4.2-4.6. An exploratory pilot in vivo study also suggested similar closure rate with histamine administration to the forearms of human volunteers after Nanopatch® treatment, although a prolonged inflammation was observed with Tissue Viability Imaging. Overall, this work shows that the pores created by the microneedle-type medical device, Nanopatch®, are transient, with the skin recovering rapidly within 1-2 days in the epidermis after application.


Subject(s)
Drug Delivery Systems , Skin/metabolism , Adult , Aged , Female , Humans , Male , Microscopy, Fluorescence, Multiphoton , Middle Aged , Needles
11.
Photochem Photobiol ; 95(5): 1142-1150, 2019 09.
Article in English | MEDLINE | ID: mdl-30883774

ABSTRACT

Zinc pyrithione is ubiquitous in commercial products particularly antidandruff shampoos. For the efficacy of zinc pyrithione therapeutic cleansers to be assessed accurately, the distribution of particles on the scalp needs to be visualized. Currently, no technique is available which provides the chemical specificity and sensitivity required. Here, we report application of fluorescence-lifetime imaging microscopy (FLIM) for high-contrast mapping of zinc pyrithione distribution on the scalp. Characterization of the zinc pyrithione emission by using both one-photon excitation at five specific wavelengths and two-photon excitation in the range of 740-820 nm revealed its FLIM fingerprint-a characteristic short average time-weighted emission lifetime of ΤZnPT = 250 ps. Bandpass-filtering FLIM signals at ΤZnPT enabled an efficient discrimination between the zinc pyrithione and major endogenous skin species in comparison with that of the conventional reflectance confocal microscopy. Our findings provide means for in vivo high-sensitivity assaying and high-contrast imaging of zinc pyrithione in biological systems.


Subject(s)
Hair Preparations/chemistry , Microscopy, Fluorescence/methods , Organometallic Compounds/chemistry , Pyridines/chemistry , Female , Humans , Middle Aged , Molecular Structure
12.
Skin Pharmacol Physiol ; 32(3): 132-141, 2019.
Article in English | MEDLINE | ID: mdl-30909278

ABSTRACT

BACKGROUND/AIMS: The mechanisms by which permeation enhancers increase human skin permeation of caffeine and naproxen were assessed in vitro. METHODS: Active compound solubility in the vehicles and in the stratum corneum (SC), active compound flux across epidermal membranes and uptake of active and vehicle components into the SC were measured. The effect of vehicle pH on the permeation of caffeine and naproxen was also determined. RESULTS: Oleic acid and eucalyptol significantly enhanced the skin penetration of caffeine and naproxen, compared to aqueous controls. Naproxen permeation was increased from vehicles with pH presenting more ionized naproxen. Caffeine maximum flux enhancement was associated with an increase in caffeine SC solubility and skin diffusivity, whereas for naproxen a penetration enhancer/vehicle-induced increase in solubility in the SC correlated with an increase in maximum flux. SC solubility was related to experimentally determined active uptake, which was in turn predicted by vehicle uptake and active compound solubility in the vehicle. CONCLUSION: A permeation enhancer-induced alteration in diffusivity, rather than effects on SC solubility, was the main driving force behind increases in permeation flux of the hydrophilic molecule caffeine. For the more the lipophilic molecule naproxen, increased SC solubility drove the increases in permeation flux.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Caffeine/pharmacokinetics , Epidermis/drug effects , Naproxen/pharmacokinetics , Pharmaceutical Vehicles/pharmacology , Skin Absorption/drug effects , Epidermis/metabolism , Ethanol/pharmacology , Eucalyptol/pharmacology , Female , Humans , Hydrogen-Ion Concentration , Oleic Acid/pharmacology , Permeability , Polyethylene Glycols/pharmacology , Sodium Dodecyl Sulfate/pharmacology
13.
J Invest Dermatol ; 139(2): 308-315, 2019 02.
Article in English | MEDLINE | ID: mdl-30448212

ABSTRACT

Zinc oxide is a widely used broad-spectrum sunscreen, but concerns have been raised about the safety of its nanoparticle (NP) form. We studied the safety of repeated application of agglomerated zinc oxide (ZnO) NPs applied to human volunteers over 5 days by assessing the skin penetration of intact ZnO-NPs and zinc ions and measuring local skin toxicity. Multiphoton tomography with fluorescence lifetime imaging microscopy was used to directly visualize ZnO-NP skin penetration and viable epidermal metabolic changes in human volunteers. The fate of ZnO-NPs was also characterized in excised human skin in vitro. ZnO-NPs accumulated on the skin surface and within the skin furrows but did not enter or cause cellular toxicity in the viable epidermis. Zinc ion concentrations in the viable epidermis of excised human skin were slightly elevated. In conclusion, repeated application of ZnO-NPs to the skin, as used in global sunscreen products, appears to be safe, with no evidence of ZnO-NP penetration into the viable epidermis nor toxicity in the underlying viable epidermis. It was associated with the release and penetration of zinc ions into the skin, but this did not appear to cause local toxicity.


Subject(s)
Nanoparticles/administration & dosage , Skin/metabolism , Sunscreening Agents/toxicity , Zinc Oxide/toxicity , Adult , Female , Fluoresceins/chemistry , Healthy Volunteers , Humans , Intravital Microscopy , Microscopy, Fluorescence, Multiphoton , Skin/diagnostic imaging , Skin/drug effects , Skin Absorption , Sunscreening Agents/administration & dosage , Sunscreening Agents/pharmacokinetics , Tissue Distribution , Tomography , Toxicity Tests, Subacute , Young Adult , Zinc Oxide/administration & dosage , Zinc Oxide/pharmacokinetics
14.
Neth Heart J ; 27(1): 24-29, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30488381

ABSTRACT

INTRODUCTION: Interventions to reduce the impact of modifiable risk factors, such as hypercholesterolaemia, smoking, and overweight, have the potential to significantly decrease the cardiovascular disease burden. The majority of the global population is unaware of their own risk of developing cardiovascular disease. Parallel to the lack of awareness, a rise in obesity and diabetes is observed. e­Health tools for lifestyle improvement have shown to be effective in changing unhealthy behaviour. In this study we report on the results of three different trials assessing the effectiveness of MyCLIC, an e­Coaching lifestyle intervention tool. METHODS: From 2008 to 2016 we conducted three trials: 1) HAPPY NL: a prospective cohort study in the Netherlands, 2) HAPPY AZM: a prospective cohort study with employees of Maastricht UMC+ and 3) HAPPY LONDON: a single-centre, randomised controlled trial with asymptomatic individuals who have a high 10-year CVD risk. RESULTS: HAPPY NL and HAPPY AZM showed that e­Coaching reduced cardiovascular risk. Both prospective trials showed a 20-25% relative reduction in 10-year cardiovascular disease risk. A lesser effect was seen in the HAPPY LONDON trial. A low frequency of logins suggests a low degree of content engagement in the e­Coaching group, which could be age related as the mean age of the participants in the HAPPY LONDON study was high. CONCLUSION: e-Coaching using MyCLIC is a low cost and effective method to perform lifestyle interventions and has the potential to reduce the 10-year cardiovascular disease risk.

15.
Sci Rep ; 8(1): 17759, 2018 12 10.
Article in English | MEDLINE | ID: mdl-30531828

ABSTRACT

Microscale medical devices are being developed for targeted skin delivery of vaccines and the extraction of biomarkers, with the potential to revolutionise healthcare in both developing and developed countries. The effective clinical development of these devices is dependent on understanding the macro-molecular diffusion properties of skin. We hypothesised that diffusion varied according to specific skin layers. Using three different molecular weights of rhodamine dextran (RD) (MW of 70, 500 and 2000 kDa) relevant to the vaccine and therapeutic scales, we deposited molecules to a range of depths (0-300 µm) in ex vivo human skin using the Nanopatch device. We observed significant dissipation of RD as diffusion with 70 and 500 kDa within the 30 min timeframe, which varied with MW and skin layer. Using multiphoton microscopy, image analysis and a Fick's law analysis with 2D cartesian and axisymmetric cylindrical coordinates, we reported experimental trends of epidermal and dermal diffusivity values ranging from 1-8 µm2 s-1 to 1-20 µm2 s-1 respectively, with a significant decrease in the dermal-epidermal junction of 0.7-3 µm2 s-1. In breaching the stratum corneum (SC) and dermal-epidermal junction barriers, we have demonstrated practical application, delivery and targeting of macromolecules to both epidermal and dermal antigen presenting cells, providing a sound knowledge base for future development of skin-targeting clinical technologies in humans.


Subject(s)
Dermis/metabolism , Epidermis/metabolism , Administration, Cutaneous , Adult , Dextrans/pharmacology , Diffusion , Drug Delivery Systems/methods , Female , Humans , Kinetics , Molecular Weight , Needles , Rhodamines/pharmacology , Skin Absorption , Vaccines/pharmacology
16.
J Control Release ; 288: 264-276, 2018 10 28.
Article in English | MEDLINE | ID: mdl-30227159

ABSTRACT

This study demonstrates, for the first time, clinical testing of elongated silica microparticles (EMP) combined with tailorable nanoemulsions (TNE) to enhance topical delivery of hydrophobic drug surrogates. Likewise, this is the first report of 6-carboxyfluorescein (a model molecule for topically delivered hydrophobic drugs) AM1 & DAMP4 (novel short peptide surfactants) used in volunteers. The EMP penetrates through the epidermis and stop at the dermal-epidermal junction (DEJ). TNE are unusually stable and useful because the oil core allows high drug loading levels and the surface properties can be easily controlled. At first, we chose alginate as a crosslinking agent between EMP and TNE. We initially incorporated a fluorescent lipophilic dye, DiI, as a hydrophobic drug surrogate into TNE for visualization with microscopy. We compared four different coating approaches to combine EMP and TNE and tested these formulations in freshly excised human skin. The delivery profile characterisation was imaged by dye- free coherent anti-Stoke Raman scattering (CARS) microscopy to detect the core droplet of TNE that was packed with pharmaceutical grade lipid (glycerol) instead of DiI. These data show the EMP penetrating to the DEJ followed by controlled release of the TNE. Freeze-dried formulations with crosslinking resulted in a sustained release profile, whereas a freeze-dried formulation without crosslinking showed an immediate burst-type release profile. Finally, we tested the crosslinked TNE coated EMP formulation in volunteers using multiphoton microscopy (MPM) and fluorescence-lifetime imaging microscopy (FLIM) to document the penetration depth characteristics. These forms of microscopy have limitations in terms of image acquisition speed and imaging area coverage but can detect fluorescent drug delivery through the superficial skin in volunteers. 6-Carboxyfluorescein was selected as the fluorescent drug surrogate for the volunteer study based on the similarity of size, charge and hydrophobicity characteristics to small therapeutic drugs that are difficult to deliver through skin. The imaging data showed a 6-carboxyfluorescein signal deep in volunteer skin supporting the hypothesis that EMP can indeed enhance the delivery of TNE in human skin. There were no adverse events recorded at the time of the study or after the study, supporting the use of 6-carboxyfluorescein as a safe and detectable drug surrogate for topical drug research. In conclusion, dry formulations, with controllable release profiles can be obtained with TNE coated EMP that can effectively enhance hydrophobic payload delivery deep into the human epidermis.


Subject(s)
Drug Delivery Systems , Nanoparticles/administration & dosage , Silicon Dioxide/administration & dosage , Skin/metabolism , Emulsions , Healthy Volunteers , Humans , Peptides/administration & dosage
17.
Elife ; 72018 07 09.
Article in English | MEDLINE | ID: mdl-29985127

ABSTRACT

Intravital microscopy can provide unique insights into the function of biological processes in a native context. However, physiological motion caused by peristalsis, respiration and the heartbeat can present a significant challenge, particularly for functional readouts such as fluorescence lifetime imaging (FLIM), which require longer acquisition times to obtain a quantitative readout. Here, we present and benchmark Galene, a versatile multi-platform software tool for image-based correction of sample motion blurring in both time resolved and conventional laser scanning fluorescence microscopy data in two and three dimensions. We show that Galene is able to resolve intravital FLIM-FRET images of intra-abdominal organs in murine models and NADH autofluorescence of human dermal tissue imaging subject to a wide range of physiological motions. Thus, Galene can enable FLIM imaging in situations where a stable imaging platform is not always possible and rescue previously discarded quantitative imaging data.


Subject(s)
Imaging, Three-Dimensional , Intravital Microscopy , Motion , Algorithms , Animals , Biosensing Techniques , Cell Adhesion , Computer Simulation , Fluorescence Resonance Energy Transfer , Guanosine Triphosphate/metabolism , Humans , Intestines/physiology , Mice , Microscopy, Fluorescence , Models, Biological , Neoplasm Metastasis , Neuropeptides/metabolism , Pancreatic Neoplasms/pathology , Skin/anatomy & histology , Software , rac1 GTP-Binding Protein/metabolism , src-Family Kinases/metabolism
18.
Article in English | MEDLINE | ID: mdl-29942192

ABSTRACT

BACKGROUND: Mitochondrial maternally inherited hearing impairment (HI) appears to be increasing in frequency. The incidence of mitochondrial defects causing HI is estimated to be between 6 and 33% of all hearing deficiencies. Mitochondrial m.1555A > G mutation is the first mtDNA mutation associated with non-syndromic sensorineural deafness and also with aminoglycoside induced HI. Its prevalence varied geographically between different populations. METHODS: We carried out PCR, restriction enzyme based screening, and sequencing of 337 subjects (including 132 patients diagnosed clinically with hereditary deafness) from 54 families from Syria for m.1555A > G mitochondrial mutation. RESULTS: Mitochondrial m.1555A > G mutation was detected in one of fifty-four families (1.85%), six out of the 132 (4.5%) of all patients with NSHI and one propositus of the 205 individuals with normal hearing (0.48%). CONCLUSION: This is the first study to report prelingual deafness causative gene mutations identified by sequencing technology in Syrian families. It is obvious from the results that the testing for the m.1555A > G mutation is useful for diagnosis of hearing loss in Syrian patients and should also be considered prior to treatment with aminoglycosides in predisposed individuals.

19.
Eur J Pharm Biopharm ; 127: 12-18, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29408519

ABSTRACT

The mathematical model describing drug flux through microporated skin was previously developed. Based on this model, two mathematical equations can be used to predict the microporatio-enhanced transdermal drug flux: the complex primal equation containing a variety of experimentally-determined variables, and the simplified straightforward equation. In this study, experimental transdermal fluxes of three corticosteroids through split-thickness human skin treated with a microneedle roller were measured, and the values of fluxes compared with those predicted using both the more complex and simplified equations. According to the results of the study, both equations demonstrated high accuracy in the prediction of the fluxes of corticosteroids. The simplified equation was validated and confirmed as robust using regression analysis of literature data. Further, its capability and ease of use was exemplified by predicting the flux of methotrexate through the skin microporated with laser and comparing with published experimental data.


Subject(s)
Adrenal Cortex Hormones/metabolism , Methotrexate/metabolism , Skin Absorption/physiology , Skin/metabolism , Administration, Cutaneous , Drug Delivery Systems/methods , Humans , Needles , Permeability/drug effects
20.
Genet Res Int ; 2017: 5836525, 2017.
Article in English | MEDLINE | ID: mdl-29362677

ABSTRACT

BACKGROUND: Hearing impairments (HI) are the most common birth defect worldwide. Very large numbers of genes have been identified but the most profound is GJB2. The clinical interest regarding this gene is very pronounced due to its high carrier frequency (0.5-5.4%) across different ethnic groups. This study aimed to determine the prevalence of common GJB2 mutations in Syrian patients with profound sensorineural HI. METHODS: We carried out PCR, restriction enzyme based screening, and sequencing of 132 Syrian patients diagnosed clinically with hereditary deafness for different GJB2 mutations. RESULTS: The result revealed that, in GJB2 gene, c.35delG is the most prevalent among affected studied subjects (13.64%), followed by c.457G>A (2.4%). CONCLUSION: The benefit of this study on the one hand is its first report of prelingual deafness causative gene mutations identified by sequencing technology in the Syrian families. It is obvious from the results that the deployment in biomedical research is highly effective and has a great impact on the ability to uncover the cause of genetic variation in different genetic diseases.

SELECTION OF CITATIONS
SEARCH DETAIL
...