Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Virol ; 75(1): 115-24, 2001 Jan.
Article in English | MEDLINE | ID: mdl-11119580

ABSTRACT

In all retroviruses analyzed to date (except for the spumaretroviruses), the Zn(2+)-coordinating residues of nucleocapsid (NC) perform or assist in crucial reactions necessary to complete the retrovirus life cycle. Six replication-defective mutations have been engineered in the two NC Zn(2+) fingers (ZFs) of simian immunodeficiency virus [SIV(Mne)] that change or delete specific Zn(2+)-interacting Cys residues and were studied by using electron microscopy, reversed-phase high-performance liquid chromatography, immunoblotting, and RNA quantification. We focused on phenotypes of produced particles, specifically morphology, Gag polyprotein processing, and genomic RNA packaging. Phenotypes were similar among viruses containing a point or deletion mutation involving the same ZF. Mutations in the proximal ZF (ZF1) resulted in near-normal Gag processing and full-length genomic RNA incorporation and were most similar to wild-type (WT) virions with electron-dense, conical cores. Mutation of the distal ZF, as well as point mutations in both ZFs, resulted in more unprocessed Gag proteins than a deletion or point mutation in ZF1, with an approximate 30% reduction in levels of full-length genomic RNA in virions. These mutant virions contained condensed cores; however, the cores typically appeared less electron dense and more rod shaped than WT virions. Surprisingly, deletion of both ZFs, including the basic linker region between the ZFs, resulted in the most efficient Gag processing. However, genomic RNA packaging was approximately 10% of WT levels, and those particles produced were highly abnormal with respect to size and core morphology. Surprisingly, all NC mutations analyzed demonstrated a significant loss of processed NC in virus particles, suggesting that Zn(2+)-coordinated NC is protected from excessive proteolytic cleavage. Together, these results indicate that Zn(2+) coordination is important for correct Gag precursor processing and NC protein stability. Additionally, SIV particle morphology appears to be the result of proper and complete Gag processing and relies less on full-length genomic RNA incorporation, as dictated by the Zn(2+) coordination in the ZFs of the NC protein.


Subject(s)
Gene Products, gag/metabolism , Nucleocapsid/physiology , Simian Immunodeficiency Virus/physiology , Virion/physiology , Zinc/metabolism , Amino Acid Sequence , Animals , Chromatography, High Pressure Liquid , Molecular Sequence Data , Nucleocapsid/chemistry , Structure-Activity Relationship , Terminal Repeat Sequences
2.
J Virol ; 74(24): 11935-49, 2000 Dec.
Article in English | MEDLINE | ID: mdl-11090194

ABSTRACT

Molecular clones were constructed that express nucleocapsid (NC) deletion mutant simian immunodeficiency viruses (SIVs) that are replication defective but capable of completing virtually all of the steps of a single viral infection cycle. These steps include production of particles that are viral RNA deficient yet contain a full complement of processed viral proteins. The mutant particles are ultrastructurally indistinguishable from wild-type virus. Similar to a live attenuated vaccine, this approach should allow immunological presentation of a full range of viral epitopes, without the safety risks of replicating virus. A total of 11 Macaca nemestrina macaques were inoculated with NC mutant SIV expressing DNA, intramuscularly (i.m.) in one study and i.m. and subcutaneously in another study. Six control animals received vector DNA lacking SIV sequences. Only modest and inconsistent humoral responses and no cellular immune responses were observed prior to challenge. Following intravenous challenge with 20 animal infectious doses of the pathogenic SIV(Mne) in a long-term study, all control animals became infected and three of four animals developed progressive SIV disease leading to death. All 11 NC mutant SIV DNA-immunized animals became infected following challenge but typically showed decreased initial peak plasma SIV RNA levels compared to those of control animals (P = 0.0007). In the long-term study, most of the immunized animals had low or undetectable postacute levels of plasma SIV RNA, and no CD4(+) T-cell depletion or clinical evidence of progressive disease, over more than 2 years of observation. Although a subset of immunized and control animals were boosted with SIV(Mne) proteins, no apparent protective benefit was observed. Immunization of macaques with DNA that codes for replication-defective but structurally complete virions appears to protect from or at least delay the onset of AIDS after infection with a pathogenic immunodeficiency virus. With further optimization, this may be a promising approach for vaccine development.


Subject(s)
Macaca nemestrina/immunology , Macaca nemestrina/virology , SAIDS Vaccines/administration & dosage , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Immunodeficiency Virus , Animals , DNA, Viral/genetics , DNA, Viral/immunology , Mutation , Nucleocapsid Proteins/administration & dosage , Nucleocapsid Proteins/genetics , Nucleocapsid Proteins/immunology , SAIDS Vaccines/genetics , SAIDS Vaccines/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Vaccines, DNA/administration & dosage , Vaccines, DNA/genetics , Vaccines, DNA/immunology
3.
J Med Primatol ; 29(3-4): 209-19, 2000 Aug.
Article in English | MEDLINE | ID: mdl-11085583

ABSTRACT

A simian immunodeficiency virus (SIV)(Mne) DNA clone was constructed that produces viruses containing a four amino acid deletion in the second zinc finger of the nucleocapsid (NC) domain of the Gag polyprotein. Viruses produced from this clone, although non-infectious both in vitro and in vivo, complete a majority of the steps in a single retroviral infection cycle. Eight pig-tailed macaques (Macaca nemestrina) were inoculated intramuscularly and subcutaneously three times over the course of 24 weeks with the NC mutant expressing DNA. These macaques, and four controls, were then challenged mucosally (intrarectally) with the homologous virus (SIV Mne CL E11S) and monitored for evidence of infection and clinical disease. Prior to challenge, a measurable humoral immune response was noted in four of eight immunized macaques. After challenge, all 12 macaques became infected, although four immunized animals greatly restricted their viral replication, and one immunized animal that controlled replication remains antibody negative. No disease has been evidence during the 46-week period of monitoring after challenge.


Subject(s)
Antibodies, Viral/blood , Immunity, Mucosal , Nucleocapsid/genetics , SAIDS Vaccines/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Immunodeficiency Virus/immunology , Vaccines, DNA/immunology , Animals , Antibody Formation , Enzyme-Linked Immunosorbent Assay , Female , Immunoglobulin G/blood , Macaca nemestrina , Nucleocapsid/immunology , Rectum , Simian Acquired Immunodeficiency Syndrome/transmission , Simian Immunodeficiency Virus/genetics , Time Factors , Viral Load , Virion/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...