Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Texture Stud ; 51(2): 300-307, 2020 04.
Article in English | MEDLINE | ID: mdl-31323133

ABSTRACT

In this study, response surface methodology (RSM) was used to evaluate the effect of extrusion conditions on physical properties of chickpea:barley extrudates (60:40), and the resulting protein quality of their flours. Barrel temperature (150-170°C) and moisture content (16-20%) were chosen as independent variables to generate a central composite design. Hardness, expansion index, bulk density, and protein quality were analyzed as responses parameters. Expansion was found to be higher at lower temperatures and higher moisture for the 60:40 chickpea:barley blend; bulk density became reduced with increased moisture; and hardness was found to increase at higher temperatures and lower moistures. The protein quality of their resulting flours was found to be greater at moisture contents higher than 16%. The composition, protein quality, and functional attributes were also examined for raw and precooked flours of chickpea, barley, and their blend at the center point of the RSM design (18% moisture, 160°C). Extrusion also leads to improved water hydration capacities and reduced viscosities for precooked individual and blended flours relative to the raw. Moreover, extrusion also led to improved protein quality in the chickpea and chickpea-barley blend, but not the individual barley flour.


Subject(s)
Cicer , Flour , Hordeum , Food Handling , Food Technology , Hardness , Humans , Proteins/analysis , Temperature
2.
Food Sci Biotechnol ; 26(2): 393-399, 2017.
Article in English | MEDLINE | ID: mdl-30263556

ABSTRACT

In this research, the effects of extrusion processing [exit-die temperature (120-150°C), moisture content (20-24% wet basis), and screw speed (260-340 rpm)] on the specific mechanical energy and physical properties (expansion ratio, bulk density, and hardness) of desi chickpea and hullless barley extrudates were estimated using response surface methodology. Exit-die temperature and feed moisture content, as well as the interaction between them were the factors that affected the product responses the most. Significant correlation was found between the hardness and bulk density (positive), hardness and expansion ratio (negative), and bulk density and expansion ratio (negative) for both chickpea and barley extrudates. Desirable characteristics (high expansion, low bulk density, and hardness) for chickpea were obtained at high exit-die temperature, relatively high moisture, and high screw speed. As for the barley extrudates, high exit-die temperature, low moisture, and moderate to high screw speed were identified as optimal.

SELECTION OF CITATIONS
SEARCH DETAIL
...