Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Language
Publication year range
1.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;45(1): 58-67, Jan. 2012. ilus
Article in English | LILACS | ID: lil-610544

ABSTRACT

Wnt proteins are involved in tissue development and their signaling pathways play an important role during embryogenesis. Wnt signaling can promote cell survival, which is beneficial for neurons, but could also lead to tumor development in different tissues. The present study investigated the effects of a Wnt protein on the susceptibility of a neural tumor cell line (PC12 cells) to the cytotoxic compounds ferrous sulfate (10 mM), staurosporine (100 and 500 nM), 3-nitropropionic acid (5 mM), and amyloid β-peptide (Aβ25-35; 50 µM). Cells (1 x 10(6) cells/mL) were treated with the Wnt-3a recombinant peptide (200 ng/mL) for 24 h before exposure to toxic insults. The Wnt-3a protein partially protected PC12 cells, with a 6-15 percent increase in cell viability in the presence of toxic agents, similar to the effect measured using the MTT and lactate dehydrogenase cell viability assays. The Wnt-3a protein increased protein expression of β-catenin by 52 percent compared to control. These findings suggest that Wnt signaling can protect neural cells against apoptosis induced by toxic agents, which are relevant to the pathogenesis of Alzheimer’s and Huntington’s diseases.


Subject(s)
Animals , Rats , Apoptosis/drug effects , Oxidative Stress/drug effects , Signal Transduction/drug effects , /drug effects , Amyloid beta-Peptides/pharmacology , Apoptosis/physiology , Cell Differentiation , Cell Proliferation , Ferrous Compounds/pharmacology , Nitro Compounds/pharmacology , Oxidative Stress/physiology , Propionates/pharmacology , Signal Transduction/physiology , Staurosporine/pharmacology , /physiology
2.
J Neurosci Res ; 90(1): 213-28, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22006678

ABSTRACT

It has been shown that ouabain (OUA) can activate the Na,K-ATPase complex and mediate intracellular signaling in the central nervous system (CNS). Inflammatory stimulus increases glutamatergic transmission, especially at N-methyl-D-aspartate (NMDA) receptors, which are usually coupled to the activation of nitric oxide synthase (NOS). Nuclear factor-κB (NF-κB) activation modulates the expression of genes involved in development, plasticity, and inflammation. The present work investigated the effects of OUA on NF-κB binding activity in rat hippocampus and the influence of this OUA-Na,K-ATPase signaling cascade in NMDA-mediated NF-κB activation. The findings presented here are the first report indicating that intrahippocampal administration of OUA, in a concentration that did not alter Na,K-ATPase or NOS activity, induced an activation of NF-κB, leading to increases in brain-derived neurotrophic factor (Bdnf), inducible NOS (iNos), tumor necrosis factor-α (Tnf-α), and B-cell leukemia/lymphoma 2 (Bcl2) mRNA levels. This response was not linked to any significant signs of neurodegeneration as showed via Fluoro-Jade B and Nissl stain. Intrahippocampal administration of NMDA induced NF-κB activation and increased NOS and α(2/3) -Na,K-ATPase activities. NMDA treatment further increased OUA-induced NF-κB activation, which was partially blocked by MK-801, an antagonist of NMDA receptor. These results suggest that OUA-induced NF-κB activation is at least in part dependent on Na,K-ATPase modulatory action of NMDA receptor in hippocampus. The interaction of these signaling pathways could be associated with biological mechanisms that may underlie the basal homeostatic state linked to the inflammatory signaling cascade in the brain.


Subject(s)
Enzyme Inhibitors/pharmacology , Gene Expression Regulation, Enzymologic/drug effects , Hippocampus/drug effects , NF-kappa B/metabolism , Ouabain/pharmacology , Receptors, N-Methyl-D-Aspartate/metabolism , Analysis of Variance , Animals , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Cell Death/drug effects , Dizocilpine Maleate/pharmacology , Dose-Response Relationship, Drug , Drug Interactions , Electrophoretic Mobility Shift Assay/methods , Enzyme Activation/drug effects , Excitatory Amino Acid Antagonists/pharmacology , Hippocampus/cytology , Male , N-Methylaspartate/pharmacology , Neurons/cytology , Neurons/drug effects , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Oligonucleotides/pharmacology , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , RNA, Messenger/metabolism , Rats , Rats, Wistar , Sodium-Potassium-Exchanging ATPase/metabolism , Time Factors , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism
3.
Braz J Med Biol Res ; 45(1): 58-67, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22124704

ABSTRACT

Wnt proteins are involved in tissue development and their signaling pathways play an important role during embryogenesis. Wnt signaling can promote cell survival, which is beneficial for neurons, but could also lead to tumor development in different tissues. The present study investigated the effects of a Wnt protein on the susceptibility of a neural tumor cell line (PC12 cells) to the cytotoxic compounds ferrous sulfate (10 mM), staurosporine (100 and 500 nM), 3-nitropropionic acid (5 mM), and amyloid ß-peptide (Aß25-35; 50 µM). Cells (1 x 10(6) cells/mL) were treated with the Wnt-3a recombinant peptide (200 ng/mL) for 24 h before exposure to toxic insults. The Wnt-3a protein partially protected PC12 cells, with a 6-15% increase in cell viability in the presence of toxic agents, similar to the effect measured using the MTT and lactate dehydrogenase cell viability assays. The Wnt-3a protein increased protein expression of ß-catenin by 52% compared to control. These findings suggest that Wnt signaling can protect neural cells against apoptosis induced by toxic agents, which are relevant to the pathogenesis of Alzheimer's and Huntington's diseases.


Subject(s)
Apoptosis/drug effects , Oxidative Stress/drug effects , Signal Transduction/drug effects , Wnt3A Protein/drug effects , Amyloid beta-Peptides/pharmacology , Animals , Apoptosis/physiology , Cell Differentiation , Cell Proliferation , Ferrous Compounds/pharmacology , Nitro Compounds/pharmacology , Oxidative Stress/physiology , PC12 Cells , Propionates/pharmacology , Rats , Signal Transduction/physiology , Staurosporine/pharmacology , Wnt3A Protein/physiology
4.
J Dent Res ; 89(10): 1123-8, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20651095

ABSTRACT

The proteinase-activated receptor 2 (PAR(2)) is a putative therapeutic target for arthritis. We hypothesized that the early pro-inflammatory effects secondary to its activation in the temporomandibular joint (TMJ) are mediated by neurogenic mechanisms. Immunofluorescence analysis revealed a high degree of neurons expressing PAR(2) in retrogradely labeled trigeminal ganglion neurons. Furthermore, PAR(2) immunoreactivity was observed in the lining layer of the TMJ, co-localizing with the neuronal marker PGP9.5 and substance-P-containing peripheral sensory nerve fibers. The intra-articular injection of PAR(2) agonists into the TMJ triggered a dose-dependent increase in plasma extravasation, neutrophil influx, and induction of mechanical allodynia. The pharmacological blockade of natural killer 1 (NK(1)) receptors abolished PAR(2)-induced plasma extravasation and inhibited neutrophil influx and mechanical allodynia. We conclude that PAR(2) activation is pro-inflammatory in the TMJ, through a neurogenic mechanism involving NK(1) receptors. This suggests that PAR(2) is an important component of innate neuro-immune response in the rat TMJ.


Subject(s)
Arthritis/pathology , Receptor, PAR-2/analysis , Temporomandibular Joint Disorders/pathology , Animals , Arthropathy, Neurogenic/pathology , Immunity, Innate/immunology , Injections, Intra-Articular , Male , Nerve Fibers/pathology , Neuroimmunomodulation/immunology , Neurokinin-1 Receptor Antagonists , Neurons/pathology , Neutrophil Infiltration/drug effects , Neutrophils/pathology , Oligopeptides/administration & dosage , Oligopeptides/pharmacology , Pain Measurement , Piperidines/pharmacology , Plasma , Quinuclidines/pharmacology , Rats , Rats, Wistar , Receptor, PAR-2/agonists , Sensory Receptor Cells/pathology , Substance P/analysis , Temporomandibular Joint/innervation , Trigeminal Ganglion/pathology , Trypsin/administration & dosage , Trypsin/pharmacology , Ubiquitin Thiolesterase/analysis
5.
J Neurosci Res ; 86(4): 845-60, 2008 Mar.
Article in English | MEDLINE | ID: mdl-17969100

ABSTRACT

Amyloid beta-peptide (A beta) likely causes functional alterations in neurons well prior to their death. Nuclear factor-kappaB (NF-kappaB), a transcription factor that is known to play important roles in cell survival and apoptosis, has been shown to be modulated by A beta in neurons and glia, but the mechanism is unknown. Because A beta has also been shown to enhance activation of N-methyl-D-aspartate (NMDA) receptors, we investigated the role of NMDA receptor-mediated intracellular signaling pathways in A beta-induced NF-kappaB activation in primary cultured rat cerebellar cells. Cells were treated with different concentrations of A beta1-40 (1 or 2 microM) for different periods (6, 12, or 24 hr). MK-801 (NMDA antagonist), manumycin A and FTase inhibitor 1 (farnesyltransferase inhibitors), PP1 (Src-family tyrosine kinase inhibitor), PD98059 [mitogen-activated protein kinase (MAPK) inhibitor], and LY294002 [phosphatidylinositol 3-kinase (PI3-k) inhibitor] were added 20 min before A beta treatment of the cells. A beta induced a time- and concentration-dependent activation of NF-kappaB (1 microM, 12 hr); both p50/p65 and p50/p50 NF-kappaB dimers were involved. This activation was abolished by MK-801 and attenuated by manumycin A, FTase inhibitor 1, PP1, PD98059, and LY294002. A beta at 1 microM increased the expression of inhibitory protein I kappaB, brain-derived neurotrophic factor, inducible nitric oxide synthase, tumor necrosis factor-alpha, and interleukin-1 beta as shown by RT-PCR assays. Collectively, these findings suggest that A beta activates NF-kappaB by an NMDA-Src-Ras-like protein through MAPK and PI3-k pathways in cultured cerebellar cells. This pathway may mediate an adaptive, neuroprotective response to A beta.


Subject(s)
Amyloid beta-Peptides/metabolism , N-Methylaspartate/metabolism , NF-kappa B/metabolism , Neurons/metabolism , Signal Transduction/physiology , Animals , Cells, Cultured , Cerebellum/drug effects , Cerebellum/metabolism , Dizocilpine Maleate/pharmacology , Electrophoretic Mobility Shift Assay , Enzyme Activation/drug effects , Enzyme Activation/physiology , Enzyme Inhibitors/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Fluorescent Antibody Technique , Gene Expression/drug effects , Immunoblotting , Mitogen-Activated Protein Kinases/drug effects , Mitogen-Activated Protein Kinases/metabolism , N-Methylaspartate/drug effects , Neurons/drug effects , Phosphatidylinositol 3-Kinases/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Rats , Rats, Wistar , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL