Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 22(2)2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33451131

ABSTRACT

Tomato (Solanum lycopersicum) as an important vegetable grown around the world is threatened by many diseases, which seriously affects its yield. Therefore, studying the interaction between tomato and pathogenic bacteria is biologically and economically important. The TPR (Tetratricopeptide repeat) gene family is a class of genes containing TPR conserved motifs, which are widely involved in cell cycle regulation, gene expression, protein degradation and other biological processes. The functions of TPR gene in Arabidopsis and wheat plants have been well studied, but the research on TPR genes in tomato is not well studied. In this study, 26 TPR gene families were identified using bioinformatics based on tomato genome data, and they were analyzed for subcellular localization, phylogenetic evolution, conserved motifs, tissue expression, and GO (Gene Ontology) analysis. The qRT-PCR was used to detect the expression levels of each member of the tomato TPR gene family (SlTPRs) under biological stress (Botrytis cinerea) and abiotic stress such as drought and abscisic acid (ABA). The results showed that members of the tomato TPR family responded to various abiotic stresses and Botrytis cinerea stress, and the SlTPR2 and SlTPR4 genes changed significantly under different stresses. Using VIGS (Virus-induced gene silencing) technology to silence these two genes, the silenced plants showed reduced disease resistance. It was also shown that TPR4 can interact with atpA which encodes a chloroplast ATP synthase CF1 α subunit. The above results provide a theoretical basis for further exploring the molecular mechanism of TPR-mediated resistance in disease defense, and also provide a foundation for tomato disease resistance breeding.


Subject(s)
Multigene Family , Plant Proteins/genetics , Solanum lycopersicum/genetics , Tetratricopeptide Repeat/genetics , Amino Acid Motifs , Carrier Proteins , Computational Biology/methods , Conserved Sequence , Gene Expression Profiling , Gene Expression Regulation, Plant , Gene Ontology , Gene Silencing , Humans , Solanum lycopersicum/classification , Solanum lycopersicum/metabolism , Molecular Sequence Annotation , Phylogeny , Plant Proteins/chemistry , Plant Proteins/metabolism , Protein Binding , Stress, Physiological/genetics
2.
Int J Mol Sci ; 21(1)2019 Dec 23.
Article in English | MEDLINE | ID: mdl-31877938

ABSTRACT

The calcineurin B-like interacting protein kinase (CIPK) protein family is a critical protein family in plant signaling pathways mediated by Ca2+, playing a pivotal role in plant stress response and growth. However, to the best of our knowledge, no study of the tomato CIPK gene family in response to abiotic stress has been reported. In this study, 22 members of the tomato CIPK gene family were successfully identified by using a combination of bioinformatics techniques and molecular analyses. The expression level of each member of tomato CIPK gene family under abiotic stress (low temperature, high salt, drought treatment) was determined by qRT-PCR. Results indicated that tomato CIPK demonstrated different degrees of responding to various abiotic stresses, and changes in SlCIPK1 and SlCIPK8 expression level were relatively apparent. The results of qRT-PCR showed that expression levels of SlCIPK1 increased significantly in early stages of cold stress, and the expression level of SlCIPK8 increased significantly during the three treatments at different time points, implicating Solanum lycopersicum CIPK1(SlCIPK1) and Solanum lycopersicum CIPK8 (SlCIPK8) involvement in abiotic stress response. SlCIPK1 and SlCIPK8 were silenced using Virus-induced gene silencing (VIGS), and physiological indexes were detected by low temperature, drought, and high salt treatment. The results showed that plants silenced by SlCIPK1 and SlCIPK8 at the later stage of cold stress were significantly less resistant to cold than wild-type plants. SlCIPK1 and SlCIPK8 silenced plants had poor drought resistance, indicating a relationship between SlCIPK1 and SlCIPK8 with response to low temperature and drought resistance. This is the first study to uncover the nucleotide sequence for tomato CIPK family members and systematically study the changes of tomato CIPK family members under abiotic stress. Here, we investigate the CIPK family's response under abiotic stress providing understanding into the signal transduction pathway. This study provides a theoretical basis for elucidating the function of tomato CIPK at low temperature and its molecular mechanism of regulating low temperatures.


Subject(s)
Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Plant , Multigene Family , Protein Serine-Threonine Kinases , Solanum lycopersicum , Cold Temperature , Dehydration/enzymology , Dehydration/genetics , Solanum lycopersicum/enzymology , Solanum lycopersicum/genetics , Plant Proteins/biosynthesis , Plant Proteins/genetics , Protein Serine-Threonine Kinases/biosynthesis , Protein Serine-Threonine Kinases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...