Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Agric Food Chem ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949485

ABSTRACT

Multiprotein bridging factor 1 (MBF1) is a very important transcription factor (TF) in plants, whose members influence numerous defense responses. Our study found that MBF1c in Cucurbitaceae was highly conserved. CsMBF1c expression was induced by temperature, salt stress, and abscisic acid (ABA) in cucumber. Overexpressed CsMBF1c enhanced the heat resistance of a cucumber, and the Csmbf1c mutant showed decreased resistance to high temperatures (HTs). CsMBF1c played an important role in stabilizing the photosynthetic system of cucumber under HT, and its expression was significantly associated with heat-related TFs and genes related to protein processing in the endoplasmic reticulum (ER). Protein interaction showed that CsMBF1c interacted with dehydration-responsive element binding protein 2 (CsDREB2) and nuclear factor Y A1 (CsNFYA1). Overexpression of CsNFYA1 in Arabidopsis improved the heat resistance. Transcriptional activation of CsNFYA1 was elevated by CsMBF1c. Therefore, CsMBF1c plays an important regulatory role in cucumber's resistance to high temperatures.

2.
Physiol Plant ; 176(1): e14215, 2024.
Article in English | MEDLINE | ID: mdl-38366670

ABSTRACT

High temperature affects the growth and production of cucumber. Selecting thermotolerant cucumber cultivars is conducive to coping with high temperatures and improving production. Thus, a quick and effective method for screening thermotolerant cucumber cultivars is needed. In this study, four cucumber cultivars were used to identify heat resistance indexes. The morphological, physiological and biochemical indexes were measured. When exposed to high temperatures, thermotolerant cucumber had a more stable photosystem, membrane, and oxidation-reduction systems. The impact of high temperatures on plants is multifaceted, and the accurate discrimination of heat resistance cannot be achieved solely based on a single or multiple indicators. Therefore, principal component analysis (PCA) was employed to comprehensively evaluate the heat resistance of cucumber plants. The results showed that the heat resistance obtained by PCA was significantly correlated with the heat injury index. In addition, the stepwise regression equation identified two heat-related indices, hydrogen peroxide content (H2 O2 ) and photosynthetic operating efficiency (Fq'/Fm'), and they can quickly distinguish the heat resistance of the other 8 cucumber cultivars. These results will help to accelerate the selection of thermotolerant resources and assist in cucumber breeding.


Subject(s)
Cucumis sativus , Cucumis sativus/physiology , Photosynthesis/physiology
3.
Hortic Res ; 11(1): uhad246, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38239808

ABSTRACT

Bacterial wilt caused by Ralstonia solanacearum is a severe soil-borne disease globally, limiting the production in Solanaceae plants. SmNAC negatively regulated eggplant resistance to Bacterial wilt (BW) though restraining salicylic acid (SA) biosynthesis. However, other mechanisms through which SmNAC regulates BW resistance remain unknown. Here, we identified an interaction factor, SmDDA1b, encoding a substrate receptor for E3 ubiquitin ligase, from the eggplant cDNA library using SmNAC as bait. SmDDA1b expression was promoted by R. solanacearum inoculation and exogenous SA treatment. The virus-induced gene silencing of the SmDDA1b suppressed the BW resistance of eggplants; SmDDA1b overexpression enhanced the BW resistance of tomato plants. SmDDA1b positively regulates BW resistance by inhibiting the spread of R. solanacearum within plants. The SA content and the SA biosynthesis gene ICS1 and signaling pathway genes decreased in the SmDDA1b-silenced plants but increased in SmDDA1b-overexpression plants. Moreover, SmDDB1 protein showed interaction with SmCUL4 and SmDDA1b and protein degradation experiments indicated that SmDDA1b reduced SmNAC protein levels through proteasome degradation. Furthermore, SmNAC could directly bind the SmDDA1b promoter and repress its transcription. Thus, SmDDA1b is a novel regulator functioning in BW resistance of solanaceous crops via the SmNAC-mediated SA pathway. Those results also revealed a negative feedback loop between SmDDA1b and SmNAC controlling BW resistance.

4.
Front Plant Sci ; 14: 1310080, 2023.
Article in English | MEDLINE | ID: mdl-38197083

ABSTRACT

Eggplant (Solanum melongena) is an economically important crop and rich in various nutrients, among which rutin that has positive effects on human health is found in eggplant. Glycosylation mediated by UDP-glycosyltransferases (UGTs) is a key step in rutin biosynthesis. However, the UGT gene has not been reported in eggplant to date. Herein, 195 putative UGT genes were identified in eggplant by genome-wide analysis, and they were divided into 17 subgroups (Group A-P and Group R) according to the phylogenetic evolutionary tree. The members of Groups A, B, D, E and L were related to flavonol biosynthesis, and rutin was the typical flavonol. The expression profile showed that the transcriptional levels of SmUGT genes in Clusters 7-10 were closely related to those of rutin biosynthetic pathway genes. Notably, SmUGT89B2 was classified into Cluster 7 and Group B; its expression was consistent with rutin accumulation in different tissues and different leaf stages of eggplant. SmUGT89B2 was located in the nucleus and cell membrane. Virus-induced gene silencing (VIGS) and transient overexpression assays showed that SmUGT89B2 can promote rutin accumulation in eggplant. These findings provide new insights into the UGT genes in eggplant, indicating that SmUGT89B2 is likely to encode the final enzyme in rutin biosynthesis.

5.
Int J Mol Sci ; 23(24)2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36555688

ABSTRACT

F-box genes play an important role in plant growth and resistance to abiotic and biotic stresses. To date, systematic analysis of F-box genes and functional annotation in eggplant (Solanum melongena) is still limited. Here, we identified 389 F-box candidate genes in eggplant. The domain study of F-box candidate genes showed that the F-box domain is conserved, whereas the C-terminal domain is diverse. There are 376 SmFBX candidate genes distributed on 12 chromosomes. A collinearity analysis within the eggplant genome suggested that tandem duplication is the dominant form of F-box gene replication in eggplant. The collinearity analysis between eggplant and the three other species (Arabidopsis thaliana, rice and tomato) provides insight into the evolutionary characteristics of F-box candidate genes. In addition, we analyzed the expression of SmFBX candidate genes in different tissues under high temperature and bacterial wilt stress. The results identified several F-box candidate genes that potentially participate in eggplant heat tolerance and bacterial wilt resistance. Moreover, the yeast two-hybrid assay showed that several representative F-box candidate proteins interacted with representative Skp1 proteins. Overexpression of SmFBX131 and SmFBX230 in tobacco increased resistance to bacterial wilt. Overall, these results provide critical insights into the functional analysis of the F-box gene superfamily in eggplant and provide potentially valuable targets for heat and bacterial resistance.


Subject(s)
F-Box Proteins , Solanum melongena , Solanum melongena/metabolism , Genome, Plant , Protein Domains , Multigene Family , F-Box Proteins/genetics , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Phylogeny
6.
Plant Cell Physiol ; 63(5): 605-617, 2022 May 16.
Article in English | MEDLINE | ID: mdl-35137209

ABSTRACT

Crop plants experience various abiotic stresses that reduce yield and quality. Although several adaptative physiological and defense responses to single stress have been identified, the behavior and mechanisms of plant response to multiple stresses remain underexamined. Herein, we determined that the leaf and vascular changes in Cucumis sativus Irregular Vasculature Patterning (CsIVP)-RNAi cucumber plants can enhance resistance to nitrogen deficiency and high-temperature stress. CsIVP negatively regulated high nitrate affinity transporters (NRT2.1, NRT2.5) and reallocation transporters (NRT1.7, NRT1.9, NRT1.12) under low nitrogen stress. Furthermore, CsIVP-RNAi plants have high survival rate with low heat injury level under high-temperature condition. Several key high-temperature regulators, including Hsfs, Hsps, DREB2C, MBF1b and WRKY33 have significant expression in CsIVP-RNAi plants. CsIVP negatively mediated high-temperature responses by physically interacting with CsDREB2C. Altogether, these results indicated that CsIVP integrates innate programming of plant development, nutrient transport and high-temperature resistance, providing a potentially valuable target for breeding nutrient-efficient and heat-resistant crops.


Subject(s)
Cucumis sativus , Cucumis sativus/metabolism , Gene Expression Regulation, Plant , Hot Temperature , Nitrogen/metabolism , Plant Breeding , Plant Proteins/genetics , Plant Proteins/metabolism , Temperature
7.
Int J Mol Sci ; 23(3)2022 Feb 05.
Article in English | MEDLINE | ID: mdl-35163740

ABSTRACT

High temperatures affect the yield and quality of vegetable crops. Unlike thermosensitive plants, thermotolerant plants have excellent systems for withstanding heat stress. This study evaluated various heat resistance indexes of the thermotolerant cucumber (TT) and thermosensitive cucumber (TS) plants at the seedling stage. The similarities and differences between the regulatory genes were assessed through transcriptome analysis to understand the mechanisms for heat stress resistance in cucumber. The TT plants exhibited enhanced leaf status, photosystem, root viability, and ROS scavenging under high temperature compared to the TS plants. Additionally, transcriptome analysis showed that the genes involved in photosynthesis, the chlorophyll metabolism, and defense responses were upregulated in TT plants but downregulated in TS plants. Zeatin riboside (ZR), brassinosteroid (BR), and jasmonic acid (JA) levels were higher in TT plants than in TS. The heat stress increased gibberellic acid (GA) and indoleacetic acid (IAA) levels in both plant lines; however, the level of GA was higher in TT. Correlation and interaction analyses revealed that heat cucumber heat resistance is regulated by a few transcription factor family genes and metabolic pathways. Our study revealed different phenotypic and physiological mechanisms of the heat response by the thermotolerant and thermosensitive cucumber plants. The plants were also shown to exhibit different expression profiles and metabolic pathways. The heat resistant pathways and genes of two cucumber varieties were also identified. These results enhance our understanding of the molecular mechanisms of cucumber response to high-temperature stress.


Subject(s)
Cucumis sativus , Cucumis sativus/genetics , Cucumis sativus/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Heat-Shock Response/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Seedlings/genetics , Seedlings/metabolism , Transcriptome
8.
New Phytol ; 225(5): 2048-2063, 2020 03.
Article in English | MEDLINE | ID: mdl-31625612

ABSTRACT

Anthocyanin fruit (Aft) and atroviolacea (atv) were characterized in wild tomato and can enhance anthocyanin content in tomato fruit. However, the gene underlying the Aft locus and the mechanism by which Aft and atv act remain largely unknown. In this study, the Aft locus was fine-mapped to an approximately 145-kb interval on chromosome 10, excluding SlAN2 (Solyc10g086250), SlANT1 (Solyc10g086260) and SlANT1-like (Solyc10g086270), which have previously been suggested as candidates. Thus, the R2R3-MYB transcription factor SlAN2-like (Solyc10g086290) was considered the best candidate gene for Aft. The CRISPR/Cas9-mediated SlAN2-like mutants show a much lower accumulation of anthocyanins associated with the downregulation of multiple anthocyanin-related genes compared to the wild-type tomato, indicating that SlAN2-like is responsible for the Aft phenotype. The repressive function of SlMYBATV also was confirmed through the CRISPR/Cas9 approach. A yeast-two-hybrid assay revealed that SlMYBATV interacts with the bHLH protein SlJAF13. Furthermore, yeast-one-hybrid and dual-luciferase transient expression assays showed that Aft directly binds to the SlMYBATV promoter and activates its expression. The results herein provide candidate genes to enhance anthocyanin content in tomato fruit. This research also provides insight into a mechanism involving the Aft-SlMYBATV pathway that fine-tunes anthocyanin accumulation in tomato fruit.


Subject(s)
Anthocyanins , Plant Proteins , Solanum lycopersicum , Transcription Factors , Fruit/genetics , Fruit/metabolism , Gene Expression Regulation, Plant , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
9.
Int J Mol Sci ; 20(22)2019 Nov 11.
Article in English | MEDLINE | ID: mdl-31718028

ABSTRACT

Chinese kale (Brassica oleracea var. chinensis Lei) is an important vegetable crop in South China, valued for its nutritional content and taste. Nonetheless, the thermal tolerance of Chinese kale still needs improvement. Molecular characterization of Chinese kale's heat stress response could provide a timely solution for developing a thermally tolerant Chinese kale variety. Here, we report the cloning of multi-protein bridging factor (MBF) 1c from Chinese kale (BocMBF1c), an ortholog to the key heat stress responsive gene MBF1c. Phylogenetic analysis showed that BocMBF1c is highly similar to the stress-response transcriptional coactivator MBF1c from Arabidopsis thaliana (AtMBF1c), and the BocMBF1c coding region conserves MBF1 and helix-turn-helix (HTH) domains. Moreover, the promoter region of BocMBF1c contains three heat shock elements (HSEs) and, thus, is highly responsive to heat treatment. This was verified in Nicotiana benthamiana leaf tissue using a green fluorescent protein (GFP) reporter. In addition, the expression of BocMBF1c can be induced by various abiotic stresses in Chinese kale which indicates the involvement of stress responses. The BocMBF1c-eGFP (enhanced green fluorescent protein) chimeric protein quickly translocated into the nucleus under high temperature treatment in Nicotiana benthamiana leaf tissue. Overexpression of BocMBF1c in Arabidopsis thaliana results in a larger size and enhanced thermal tolerance compared with the wild type. Our results provide valuable insight for the role of BocMBF1c during heat stress in Chinese kale.


Subject(s)
Brassica/genetics , Plant Proteins/genetics , Thermotolerance , Trans-Activators/genetics , Active Transport, Cell Nucleus , Brassica/metabolism , Cell Nucleus/metabolism , Cloning, Molecular , Conserved Sequence , Plant Proteins/chemistry , Plant Proteins/metabolism , Protein Domains , Nicotiana/genetics , Trans-Activators/chemistry , Trans-Activators/metabolism , Transgenes
10.
J Exp Bot ; 70(19): 5343-5354, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31587071

ABSTRACT

Bacterial wilt (BW) caused by Ralstonia solanacearum is a serious disease affecting the production of Solanaceae species, including eggplant (Solanum melongena). However, few resistance genes have been identified in eggplant, and therefore the underlying mechanism of BW resistance remains unclear. Hence, we investigated a spermidine synthase (SPDS) gene from eggplant and created knock-down lines with virus-induced gene silencing. After eggplant was infected with R. solanacearum, the SmSPDS gene was induced, concurrent with increased spermidine (Spd) content, especially in the resistant line. We speculated that Spd plays a significant role in the defense response of eggplant to BW. Moreover, using the yeast one-hybrid approach and dual luciferase-based transactivation assay, an R2R3-MYB transcription factor, SmMYB44, was identified as directly binding to the SmSPDS promoter, activating its expression. Overexpression of SmMYB44 in eggplant induced the expression of SmSPDS and Spd content, increasing the resistance to BW. In contrast, the SmMYB44-RNAi transgenic plants showed more susceptibility to BW compared with the control plants. Our results provide insight into the SmMYB44-SmSPDS-Spd module involved in the regulation of resistance to R. solanacearum. This research also provides candidates to enhance resistance to BW in eggplant.


Subject(s)
Gene Expression Regulation , Plant Diseases/genetics , Plant Proteins/genetics , Ralstonia solanacearum/physiology , Solanum melongena/genetics , Spermidine Synthase/genetics , Transcription Factors/genetics , Disease Resistance/genetics , Plant Diseases/microbiology , Plant Proteins/metabolism , Plants, Genetically Modified/enzymology , Plants, Genetically Modified/genetics , Plants, Genetically Modified/microbiology , Solanum melongena/enzymology , Solanum melongena/microbiology , Spermidine Synthase/metabolism , Transcription Factors/metabolism
11.
Plant Cell Physiol ; 60(3): 643-656, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30597099

ABSTRACT

High quantities of anthocyanins in plants confer potential protective benefits against biotic and abiotic stressors. Studies have shown that the bZIP transcription factor HY5 plays a key role in controlling anthocyanin accumulation in response to light. However, in hy5 mutants, residual anthocyanins have been detected, indicating that other regulators exist to regulate anthocyanin biosynthesis in an HY5-independent manner. Here, we employed the CRISPR/Cas9 (clustered regularly interspersed short palindromic repeats/CRISPR-associated protein 9) system specifically to induce targeted mutagenesis of SlHY5 in the purple tomato cultivar 'Indigo Rose'. The T2 generation of tomato plants homozygous for the null allele of the SlHY5 frameshift mutated by a 1 bp insertion contained a lower anthocyanin content. Transcriptional analysis showed that most of the anthocyanin biosynthesis structural genes and several regulatory genes were down-regulated in the hy5 mutant lines. With transcriptome analyses of the various tissues from hy5 mutant lines, eight candidate transcription factors were identified that may regulate anthocyanin biosynthesis in an HY5-independent manner. These findings deepen our understanding of how light controls anthocyanin accumulation and facilitate the identification of the regulators of anthocyanin biosynthesis in an HY5-independent manner.


Subject(s)
Anthocyanins/biosynthesis , Light , Solanum lycopersicum/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
12.
Front Plant Sci ; 9: 797, 2018.
Article in English | MEDLINE | ID: mdl-29946334

ABSTRACT

High temperature (HT) stress affects the growth and production of cucumbers, but genetic resources with high heat tolerance are very scarce in this crop. Calmodulin (CaM) has been confirmed to be related to the regulation of HT stress resistance in plants. CsCaM3, a CaM gene, was isolated from cucumber inbred line "02-8." Its expression was characterized in the present study. CsCaM3 transcripts differed among the organs and tissues of cucumber plants and could be induced by HTs or abscisic acid, but not by salicylic acid. CsCaM3 transcripts exhibited subcellular localization to the cytoplasm and nuclei of cells. Overexpression of CsCaM3 in cucumber plants has the potential to improve their heat tolerance and protect against oxidative damage and photosynthesis system damage by regulating the expression of HT-responsive genes in plants, including chlorophyll catabolism-related genes under HT stress. Taken together, our results provide useful insights into stress tolerance in cucumber.

13.
Gene ; 644: 137-147, 2018 Feb 20.
Article in English | MEDLINE | ID: mdl-29104166

ABSTRACT

Eggplant (Solanum melongena) is a major vegetable crop worldwide. However, it is susceptible to bacterial wilt (BW) caused by Ralstonia solanacearum, which has become an important factor limiting eggplant yield and quality. The underlying mechanism of BW remains unknown. Here, RNA-sequencing was used to characterize the transcriptomes of resistant (R) and susceptible (S) strains before (R0, S0) and after (R1, S1) R. solanacearum inoculation. After the removal of low-quality sequences and assembly, 125,852 contigs, 122,508 transcripts, and 68,792 unigenes were identified, with 51,165 non-redundant unigenes annotated. Functional annotations were provided for 11,039 unigenes using four databases (NCBI Nr, Swissprot, KEGG and COG database). A total of 1137 and 9048 genes were found to be up- and down-regulated, respectively, in R0 relative to R1 samples, with 738 and 217 up- and down-regulated in S0 relative to R0 samples, 6087 and 5832 up- and down-regulated in S0 relative to S1 samples, and 4712 and 12,523 up- and down-regulated in S1 relative to R1 samples, respectively. In conclusion, our results provide useful insights into the potential mechanism of BW and are an important basis for further analysis.


Subject(s)
Plant Diseases/genetics , Plant Diseases/microbiology , Solanum melongena/genetics , Solanum melongena/microbiology , Transcription, Genetic/genetics , Bacterial Infections/genetics , Bacterial Infections/microbiology , Disease Resistance/genetics , Down-Regulation/genetics , Genome, Plant/genetics , Ralstonia solanacearum/pathogenicity , Sequence Analysis, RNA/methods , Transcriptome/genetics , Up-Regulation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...