Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 20(17): 11749-11757, 2018 May 03.
Article in English | MEDLINE | ID: mdl-29651496

ABSTRACT

The optical properties of metal-film-coupled nanoparticles (NPs) are highly sensitive to physical and optical interactions between the NPs and the spacer medium in the gap between the NP and metal film. Here, we investigate the physical and optical interactions between gold NPs (AuNPs) and semiconducting conjugated polymer thin-film spacers in a "sphere-on-plane" type metal-film-coupled NP system, and their influence on the plasmonic scattering of individual AuNPs. We choose two different conjugated polymers: one with an absorption spectrum that is resonant with the plasmonic modes of the AuNPs and another that is non-resonant. By correlating dark-field back-scattering optical images with topographic atomic force microscope images, we find that partial embedding of the AuNPs occurs in both conjugated polymers to different extents. This can lead to partial quenching of certain plasmonic scattering modes, which results in a change of the back-scattering colors from the AuNPs. Pronounced, red-shifted scattering is observed due to deep embedding of the AuNPs, particularly for thicker conjugated polymer spacers that have resonant absorption with the plasmonic modes of the AuNPs. Polarization-controlled defocused dark-field imaging is employed to visualize the emergence of horizontally-polarized scattering modes upon embedding of AuNPs into the conjugated polymer spacer. These results demonstrate the importance of nanoparticle-spacer physical interactions to the control of the color and polarization of coupled plasmonic modes in nanoparticle-film systems relevant.

2.
Nanoscale ; 7(31): 13196-206, 2015 Aug 21.
Article in English | MEDLINE | ID: mdl-26098863

ABSTRACT

We present an experimental and theoretical study of the electromagnetic interaction between a single gold nanoparticle and a thin gold substrate separated by a sub-50 nm-thick optically absorptive polythiophene spacer layer. Single-particle dark-field scattering spectra show distinct resonance features assigned to four different modes: a horizontal image dipole coupling mode, a vertical image dipole coupling mode and horizontal and vertical coupling modes between localized surface plasmon resonances (LSPRs) and surface plasmon polaritons (SPPs). Relatively broadband spectral tuning of the modes can be achieved by modification of the thickness of either the absorptive spacer or the underlying metal film. Dark-field images also reveal the existence of particles for which the signal of the horizontal image dipole coupling mode is suppressed. This is attributed to partial-embedding of gold nanoparticles into the polythiophene spacer and leads to higher scattered light intensities at longer wavelengths. Full-field electromagnetic simulations show good agreement with the experimental results for the various sample conditions. Strong local electric field confinement at longer wavelengths in the polythiophene spacer, due to the vertical image dipole coupling mode and a LSPR-SPP coupling mode, is also observed in simulations and contributes to absorption enhancement in the spacer. Furthermore, we find absorption enhancement in the semiconducting polythiophene spacer increases with decreasing thickness, indicating the increased light trapping ability of the gold nanoparticles for ultra-thin semiconductor layers. The need for ever-thinner semiconductor layers in optoelectronic devices requires effective light trapping at deeply-subwavelength scales. This work demonstrates that light trapping in sub-50 nm-thick semiconductor layers is possible using a "sphere-on-plane" system and offers insight into how coupling modes can be manipulated in this system.

3.
Nanoscale ; 3(11): 4600-3, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21975557

ABSTRACT

This communication describes carboxyl-functionalized nanochains with amorphous carbon shell (18 nm) and magnetic core using ferrocene as a single reactant under the induction of an external magnetic field (0.40 T), which shows a superparamagnetic behavior and magnetization saturation of 38.6 emu g(-1). Because of mesoporous structure (3.8 nm) and surface negative charge (-35.18 mV), the nanochains can be used as adsorbent for removing the heavy metal ions (90%) from aqueous solution.


Subject(s)
Metals, Heavy/isolation & purification , Nanotechnology/methods , Nanotubes, Carbon/chemistry , Nanotubes, Carbon/ultrastructure , Water Pollutants, Chemical/isolation & purification , Water/chemistry , Adsorption , Macromolecular Substances/chemistry , Magnetics , Materials Testing , Molecular Conformation , Particle Size , Static Electricity , Surface Properties , Water Purification/methods
4.
Chem Commun (Camb) ; 47(40): 11237-9, 2011 Oct 28.
Article in English | MEDLINE | ID: mdl-21909529

ABSTRACT

The influence of an applied MF on the SERS of Ag nanoparticles was investigated both experimentally and theoretically. The presence of a MF could lead to reducing electrons on the surface of Ag nanoparticles and a broadened energy gap, which could reduce surface plasma and charge transfer and then decrease the SERS intensity.

SELECTION OF CITATIONS
SEARCH DETAIL
...