Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Xray Sci Technol ; 31(6): 1295-1313, 2023.
Article in English | MEDLINE | ID: mdl-37718833

ABSTRACT

BACKGROUND: Medical image segmentation is crucial in disease diagnosis and treatment planning. Deep learning (DL) techniques have shown promise. However, optimizing DL models requires setting numerous parameters, and demands substantial labeled datasets, which are labor-intensive to create. OBJECTIVE: This study proposes a semi-supervised model that can utilize labeled and unlabeled data to accurately segment kidneys, tumors, and cysts on CT images, even with limited labeled samples. METHODS: An end-to-end semi-supervised learning model named MTAN (Mean Teacher Attention N-Net) is designed to segment kidneys, tumors, and cysts on CT images. The MTAN model is built on the foundation of the AN-Net architecture, functioning dually as teachers and students. In its student role, AN-Net learns conventionally. In its teacher role, it generates objects and instructs the student model on their utilization to enhance learning quality. The semi-supervised nature of MTAN allows it to effectively utilize unlabeled data for training, thus improving performance and reducing overfitting. RESULTS: We evaluate the proposed model using two CT image datasets (KiTS19 and KiTS21). In the KiTS19 dataset, MTAN achieved segmentation results with an average Dice score of 0.975 for kidneys and 0.869 for tumors, respectively. Moreover, on the KiTS21 dataset, MTAN demonstrates its robustness, yielding average Dice scores of 0.977 for kidneys, 0.886 for masses, 0.861 for tumors, and 0.759 for cysts, respectively. CONCLUSION: The proposed MTAN model presents a compelling solution for accurate medical image segmentation, particularly in scenarios where the labeled data is scarce. By effectively utilizing the unlabeled data through a semi-supervised learning approach, MTAN mitigates overfitting concerns and achieves high-quality segmentation results. The consistent performance across two distinct datasets, KiTS19 and KiTS21, underscores model's reliability and potential for clinical reference.


Subject(s)
Cysts , Kidney Neoplasms , Humans , Reproducibility of Results , Kidney Neoplasms/diagnostic imaging , Kidney/diagnostic imaging , Supervised Machine Learning
2.
BMC Med Inform Decis Mak ; 23(1): 92, 2023 05 10.
Article in English | MEDLINE | ID: mdl-37165349

ABSTRACT

BACKGROUND: Kidney tumors have become increasingly prevalent among adults and are now considered one of the most common types of tumors. Accurate segmentation of kidney tumors can help physicians assess tumor complexity and aggressiveness before surgery. However, segmenting kidney tumors manually can be difficult because of their heterogeneity. METHODS: This paper proposes a 2.5D MFFAU-Net (multi-level Feature Fusion Attention U-Net) to segment kidneys, tumors and cysts. First, we propose a 2.5D model for learning to combine and represent a given slice in 2D slices, thereby introducing 3D information to balance memory consumption and model complexity. Then, we propose a ResConv architecture in MFFAU-Net and use the high-level and low-level feature in the model. Finally, we use multi-level information to analyze the spatial features between slices to segment kidneys and tumors. RESULTS: The 2.5D MFFAU-Net was evaluated on KiTS19 and KiTS21 kidney datasets and demonstrated an average dice score of 0.924 and 0.875, respectively, and an average Surface dice (SD) score of 0.794 in KiTS21. CONCLUSION: The 2.5D MFFAU-Net model can effectively segment kidney tumors, and the results are comparable to those obtained with high-performance 3D CNN models, and have the potential to serve as a point of reference in clinical practice.


Subject(s)
Kidney Neoplasms , Physicians , Adult , Humans , Kidney/diagnostic imaging , Kidney Neoplasms/diagnostic imaging , Neural Networks, Computer , Image Processing, Computer-Assisted
3.
Comput Biol Med ; 150: 106223, 2022 11.
Article in English | MEDLINE | ID: mdl-37859296

ABSTRACT

The Kidney and Kidney Tumor Segmentation Challenge 2021 (KiTS21) released a kidney CT dataset with 300 patients. Unlike KiTS19, KiTS21 provided a cyst category. Therefore, the segmentation of kidneys, tumors, and cysts will be able to assess the complexity and aggressiveness of kidney mass. Deep learning models can save medical resources, but 3D models still have some disadvantages, such as the high cost of computing resources. This paper proposes a scheme that saves computing resources and achieves the segmentation of kidney mass in two steps. First, we preprocess the kidney volume data using the automatic down-sampling method of 3D images, reducing the volume while preserving the feature information. Second, we finely segment kidneys, tumors, and cysts using the AgDenseU-Net (Attention gate DenseU-Net) 2.5D model. KiTS21 proposed using Hierarchical Evaluation Classes (HECs) to compute a metric for the superset: the HEC of kidney considers kidneys, tumors, and cysts as the foreground to compute segmentation performance; the HEC of kidney mass considers both tumor and cyst as the foreground classes; the HEC of tumor considers tumor as the foreground only. For KiTS21, our model achieved a dice score of 0.971 for the kidney, 0.883 for the mass, and 0.815 for the tumor. In addition, we also tested segmentation results without HECs, and our model achieved a dice score of 0.950 for the kidney, 0.878 for the tumor, and 0.746 for the cyst. The results demonstrate that the method proposed in this paper can be used as a reference for kidney tumor segmentation.


Subject(s)
Cysts , Kidney Neoplasms , Humans , Kidney Neoplasms/diagnostic imaging , Kidney/diagnostic imaging , Image Processing, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL
...