Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Waste Manag Res ; 40(8): 1212-1219, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34967247

ABSTRACT

The disposal of fly ash with high salt content has become an important bottleneck for the further application of municipal solid waste incineration (MSWI). In this study, the soluble salt content and composition of fly ash from different MSWI were analysed. The composition of fly ash was affected by incinerator type and flue gas cleaning system, especially the type of deacidification solvent. The soluble salt content in fly ash from MSW grate incinerator can be over 35.16%. Most of the soluble salt was calcium salt and chloride salt. The effect of washing parameters including liquid/solid (L/S) ratio and washing time on salt removal from fly ash were studied. Raw fly ash contained high chlorine (Cl) with the maximum of 19.83% and it can be significantly reduced by washing. Double-washing and secondary-washing had better performance than single-washing on salt removal. The secondary-washing did not only save water, but also reduced the energy cost during evaporation for crystallising soluble salt. Based on the analysis of variance (ANOVA), L/S ratio was the most principal factor for salt and Cl removal of fly ash by washing.


Subject(s)
Metals, Heavy , Refuse Disposal , Carbon , Chlorine , Coal Ash , Incineration , Metals, Heavy/analysis , Particulate Matter , Solid Waste/analysis , Water
2.
Sci Total Environ ; 754: 142192, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-32920412

ABSTRACT

This study aims to convert oil extracted food waste (OEFW) into hydrochar as potential solid fuel via hydrothermal carbonization (HTC) process. The effect of HTC temperature and residence time on the physicochemical characteristic, combustion behavior, and the removal behavior of sodium and potassium were evaluated. The raw OEFW material was successfully converted into energy densified hydrochar with higher high heating value (HHV) (21.13-24.07 MJ/kg) and higher fuel ratio (0.112-0.146). In addition, carbon content in hydrochar increased to 46.92-51.82% after HTC at various operating conditions. Compared with OEFW, the hydrochar had more stable and longer combustion process with the higher ignition temperature and burnout temperature. Besides, the HTC process showed high removal rates of sodium and potassium. It was found that the HTC temperature resulted in a significant reduction of sodium and potassium in hydrochar as compared to the residence time. The highest removal rate of sodium (70.98%) and potassium (84.05%) was obtained. Overall, the results show that the HTC is a promising alternative for conventional technologies (e.g., incineration and landfill) for treatment and energy conversion of OEFW.

3.
Sci Total Environ ; 752: 142331, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33207504

ABSTRACT

The huge amount of food waste (FW), containing high organic matter content and moisture, is difficult to be well treated. Supercritical water gasification (SCWG) can efficiently convert FW to H2-rich syngas. However, it requires high energy input due to the high temperature and high pressure. This study provided an innovative "two-steps heating process" for the SCWG of FW, which firstly utilized hydrothermal (HT) pretreatment to shorter time of SCWG. The effects of different HT temperature (200 °C, 250 °C, 300 °C, 30 min) to SCWG temperature (480 °C, 30 min) and the different residence time (20 min HT - 40 min SCWG, 30 min HT - 30 min SCWG, and 40 min HT - 20 min SCWG) on total syngas yield, carbon conversion efficiency (CE), cold gas efficiency (CGE), and hydrogen conversion efficiency (HE) were studied. Moreover, the energy input by means of electricity consumption in each experiment was measured to determine the energy saving rate. The optimal condition (200 °C, 20 min HT - 40 min SCWG), obtaining the gas yield (17.22 mol/kg), CE (20.10%), CGE (22.13%), and HE (41.54%), was higher than the gas yield (16.53 mol/kg), CE (19.98%), CGE (20%), and HE (38.08%) of directly SCWG (60 min, 0 °C-480 °C). Moreover, the TOC of derived liquid and the pyrolysis characteristics of solid residues were analyzed. Additionally, it was also observed the HT pretreatment helped to reduce the electricity consumption. The highest energy saving rate was 15.58%.

SELECTION OF CITATIONS
SEARCH DETAIL
...