Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Article in English | MEDLINE | ID: mdl-38828789

ABSTRACT

The aim of this study was to validate the preventive effects of koumine (KM), a monoterpene indole alkaloid, on gouty arthritis (GA) and to explore its possible mechanisms. C57BL/6 mice were intraperitoneally administered KM (0.8, 2.4 or 7.2 mg/kg), colchicine (3.0 mg/kg) or sterile saline. One hour later, a monosodium urate (MSU) suspension was injected into the right hind paws of the mice to establish an acute gout model. Inflammation symptoms were evaluated at 0, 3, 6, 12 and 24 h, and the mechanical withdrawal threshold was evaluated at 0, 6 and 24 h. After 24 h, the mice were euthanized, and the joint tissue, kidney and blood were collected for subsequent experiments. Histological examination and antioxidant enzyme, kidney index and serum uric acid (UA) measurements were taken. The expression levels of the signalling pathway components were determined. KM effectively alleviated the symptoms of redness, swelling and pain; counteracted inflammatory cell infiltration; and increased antioxidant enzyme levels, reduced kidney index and seru UA levels through regulating UA excretion in MSU-induced mice. The expression of toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB)/nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing 3 (NLRP3) signalling pathway proteins and mRNA were reduced in the KM group. These results suggest that KM may be effective in alleviating GA through the TLR4/NF-κB/NLRP3 pathway.

2.
Int J Nanomedicine ; 18: 2973-2988, 2023.
Article in English | MEDLINE | ID: mdl-37304972

ABSTRACT

Introduction: Koumine (KME) is the most abundant active ingredient separated from Gelsemium elegans Benth and exhibits a significant therapeutic effect on rheumatoid arthritis (RA). It is a lipophilic compound with poor aqueous solubility, and there is an urgent need to develop novel dosage forms of KME and promote its clinical application for the treatment of RA. The aim of this study was to design and develop KME-loaded microemulsions (KME-MEs) for the effective management of RA. Methods: The composition of the microemulsion was selected by carrying out a solubility study and generating pseudoternary phase diagrams, and further optimized by D-Optimal design. The optimized KME-MEs was evaluated for particle size, viscosity, drug release, storage stability, cytotoxicity, cellular uptake, Caco-2 cell transport and everted gut sac investigations. In vivo fluorescence imaging and the therapeutic effects of KME and KME-MEs on collagen-induced arthritis (CIA) rats were also evaluated. Results: The optimized microemulsion contained 8% oil, 32% Smix (surfactant/cosurfactant) and 60% water and was used for in vivo and in vitro studies. The optimal KME-MEs exhibited a small globule size of 18.5 ± 0.14 nm and good stability over 3 months, and the release kinetics followed a first-order model. These KME-MEs had no toxic effect on Caco-2 cells but were efficiently internalized into the cytoplasm. Compared to KME, the KME-MEs displayed significantly increased permeability and absorption in Caco-2 cell monolayer assay and ex vivo everted gut sac experiment. As expected, the KME-MEs attenuated the progression of RA in CIA rats and were more effective than free KME with a reduced frequency of administration. Conclusion: The KME-MEs improved the solubility and therapeutic efficacy of KME by employing formulation technology. These results provide a promising vehicle for the oral delivery of KME to treat RA and have attractive potential for clinical translation.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Animals , Rats , Humans , Caco-2 Cells , Arthritis, Experimental/chemically induced , Arthritis, Experimental/drug therapy , Arthritis, Rheumatoid/chemically induced , Arthritis, Rheumatoid/drug therapy , Biological Assay
3.
J Ethnopharmacol ; 311: 116474, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37031823

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The imbalance between M1-and M2-polarized macrophages is one of the major pathophysiological changes in RA. Therefore, targeted macrophage polarization may be an effective therapy for RA. Koumine, an alkaloid monomer with the highest content and low toxicity in Gelsemium elegans Benth., has the effect of treating RA by playing an immunomodulatory role by influencing various immune cells. However, whether koumine affects macrophage polarization in RA and the associated molecular mechanisms remain unknown. AIM OF THE STUDY: To investigate the mechanism of the anti-RA effect of koumine on macrophage polarization. MATERIALS AND METHODS: The effect of koumine on macrophage polarization was investigated in vivo and in vitro. We first explored the effects of koumine on AIA rats and detected the levels of M1/M2 macrophage polarization markers in the spleen by western blotting. Then, we explored the regulatory effect of koumine on M1/M2 macrophage polarization and the effect on the PI3K/AKT signaling pathway in vitro. Finally, we verified the effects of koumine on macrophage polarization in CIA mice. RESULTS: We found that koumine alleviated symptoms, including relieving pain, reducing joint redness and swelling in AIA rats and restoring the M1/M2 macrophage balance in vivo. Interestingly, koumine had an inhibitory effect on both M1 and M2 macrophage polarization in vitro, but it had a stronger inhibitory effect on M1 macrophage. In a mixed polarization experiment, koumine mainly inhibited M1 macrophage polarization and had an inhibitory effect on the PI3K/AKT signaling pathway. Finally, we found that koumine had therapeutic effects on CIA mice, regulated macrophage polarization and inhibited the PI3K/AKT signaling pathway. CONCLUSIONS: Our results reveal that koumine regulates macrophage polarization through the PI3K/AKT signaling pathway. This may be one of the important mechanisms of its anti-RA effect, which provides a theoretical and scientific basis for the possible clinical application of koumine.


Subject(s)
Arthritis, Rheumatoid , Proto-Oncogene Proteins c-akt , Rats , Mice , Animals , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Arthritis, Rheumatoid/chemically induced , Arthritis, Rheumatoid/drug therapy , Macrophages
4.
J Neurosci ; 43(16): 2907-2920, 2023 04 19.
Article in English | MEDLINE | ID: mdl-36868854

ABSTRACT

General anesthesia shares many similarities with natural sleep in behavior and electroencephalogram (EEG) patterns. The latest evidence suggests that general anesthesia and sleep-wake behavior may share overlapping neural substrates. The GABAergic neurons in the basal forebrain (BF) have recently been demonstrated to play a key role in controlling wakefulness. It was hypothesized that BF GABAergic neurons may participate in the regulation of general anesthesia. Here, using in vivo fiber photometry, we found that the activity of BF GABAergic neurons was generally inhibited during isoflurane anesthesia, having obviously decreased during the induction of anesthesia and being gradually restored during the emergence from anesthesia, in Vgat-Cre mice of both sexes. Activation of BF GABAergic neurons with chemogenetic and optogenetic approaches decreased sensitivity to isoflurane, delayed induction, and accelerated emergence from isoflurane anesthesia. Optogenetic activation of BF GABAergic neurons decreased EEG δ power and the burst suppression ratio (BSR) during 0.8% and 1.4% isoflurane anesthesia, respectively. Similar to the effects of activating BF GABAergic cell bodies, photostimulation of BF GABAergic terminals in the thalamic reticular nucleus (TRN) also strongly promoted cortical activation and behavioral emergence from isoflurane anesthesia. Collectively, these results showed that the GABAergic BF is a key neural substrate for general anesthesia regulation that facilitates behavioral and cortical emergence from general anesthesia via the GABAergic BF-TRN pathway. Our findings may provide a new target for attenuating the depth of anesthesia and accelerating emergence from general anesthesia.SIGNIFICANCE STATEMENT The basal forebrain (BF) is a key brain region controlling sleep-wake behavior. Activation of GABAergic neurons in the BF potently promotes behavioral arousal and cortical activity. Recently, many sleep-wake-related brain structures have been reported to participate in the regulation of general anesthesia. However, it is still unclear what role BF GABAergic neurons play in general anesthesia. In this study, we aim to reveal the role of BF GABAergic neurons in behavioral and cortical emergence from isoflurane anesthesia and elucidate the underlying neural pathways. Understanding the specific role of BF GABAergic neurons in isoflurane anesthesia would improve our understanding of the mechanisms of general anesthesia and may provide a new strategy for accelerating emergence from general anesthesia.


Subject(s)
Basal Forebrain , Isoflurane , Male , Female , Mice , Animals , Isoflurane/pharmacology , Basal Forebrain/physiology , GABAergic Neurons/physiology , Sleep/physiology , Electroencephalography , Anesthesia, General
5.
Eur J Med Chem ; 248: 115120, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36682173

ABSTRACT

We synthesized a series of novel pyromeconic acid-styrene hybrid compounds and measured their activities in inhibiting Aß1-42 self-aggregation and promoting disaggregation, and their anti-inflammatory and antioxidant properties. The most potent compound, compound 30, had IC50 values of 11.15 µM and 6.87 µM for inhibition of fibril aggregation and promotion of fibril disaggregation, respectively. Because of its redox metal chelating property, 30 also inhibited Cu2+-induced Aß1-42 fibril aggregation and promoted fibril disaggregation with IC50 of 3.69 µM and 3.35 µM, respectively. Molecular docking demonstrated that 30 interacted with key amino acids of Aß1-42, and the reliability of the complex was confirmed by molecular dynamics. In addition, 30 displayed excellent antioxidative activity (oxygen radical absorbance capacity = 2.65 Trolox equivalents) and moderate anti-inflammatory activity and neuroprotection in cell culture assays. Compound 30 was safe in acute toxicity test in mice, and it exhibited favorable pharmacokinetic properties, particularly, accumulation in the hippocampus (maximum ratio of hippocampus to plasma = 7.12). Compound 30 alleviated cognitive deficits in scopolamine-induced amnesia mice; this property may have been attributed to reducing neuroinflammation by inhibiting ionized calcium binding adapter molecule 1 and glial fibrillary acidic protein expression and reducing oxidative stress by activating the Nrf2/HO-1 signaling pathway. In view of its many properties, we envision that 30 is a promising lead for the treatment of Alzheimer's disease.


Subject(s)
Alzheimer Disease , Neuroprotective Agents , Mice , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Molecular Docking Simulation , Neuroprotection , Reproducibility of Results , Cholinesterase Inhibitors/pharmacology , Antioxidants/chemistry , Oxidation-Reduction , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Neuroprotective Agents/chemistry , Acetylcholinesterase/metabolism
6.
Br J Pharmacol ; 180(10): 1408-1428, 2023 05.
Article in English | MEDLINE | ID: mdl-36519959

ABSTRACT

BACKGROUND AND PURPOSE: New remedies are required for the treatment of diabetic neuropathic pain (DNP) due to insufficient efficacy of available therapies. Here, we used chemogenetic approaches combined with in vivo pharmacology to elucidate the role of basolateral amygdala (BLA) astrocytes in DNP pathogenesis and provide new insights into therapeutic strategies for DNP. EXPERIMENTAL APPROACH: A streptozotocin-induced DNP model was established. Designer receptors exclusively activated by designer drugs (DREADDs) were used to regulate astrocyte activity. Mechanical hyperalgesia was assessed using the electronic von Frey test. Anxiety-like behaviours were detected using open field and elevated plus maze tests. Astrocytic activity was detected by immunofluorescence, and cytokine content was determined by ELISA. KEY RESULTS: BLA astrocytes were regulated by DREADDs, and inhibition of BLA astrocytes attenuated mechanical allodynia and pain-related negative emotions in DNP rats. In contrast, temporary activation of BLA astrocytes induced allodynia without anxious behaviours in naive rats. In addition, koumine (KM) alleviated mechanical allodynia and anxiety-like behaviours in DNP rats, inhibited the activation of BLA astrocytes and suppressed the inflammatory response. Furthermore, persistent activation of BLA astrocytes through chemogenetics mimicked chronic pain, and KM alleviated the pain hypersensitivity and anxiety-like behaviours. CONCLUSION AND IMPLICATIONS: DREADDs bidirectionally regulate the activity of BLA astrocytes, which proves for the first time the role of BLA astrocyte activation in the pathogenesis of DNP and represents a novel therapeutic strategy for DNP. KM ameliorates DNP, perhaps by inhibiting the activation of BLA astrocytes and reveal KM as a potential candidate for treating DNP.


Subject(s)
Basolateral Nuclear Complex , Diabetes Mellitus , Neuralgia , Rats , Animals , Hyperalgesia/drug therapy , Astrocytes , Neuralgia/drug therapy
8.
Acta Pharmacol Sin ; 44(3): 538-545, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36127507

ABSTRACT

Aversive emotion of opioid withdrawal generates motivational state leading to compulsive drug seeking and taking. Kappa opioid receptor (KOR) and its endogenous ligand dynorphin have been shown to participate in the regulation of aversive emotion. In the present study, we investigated the role of dynorphin/KOR system in the aversive emotion following opioid withdrawal in acute morphine-dependent mice. We found that blockade of KORs before pairing by intracerebroventricular injection of KOR antagonist norBNI (20, 40 µg) attenuated the development of morphine withdrawal-induced conditioned place aversion (CPA) behavior. We further found that morphine withdrawal increased dynorphin A expression in the dorsal hippocampus, but not in the amygdala, prefrontal cortex, nucleus accumbens, and thalamus. Microinjection of norBNI (20 µg) into the dorsal hippocampus significantly decreased morphine withdrawal-induced CPA behavior. We further found that p38 MAPK was significantly activated in the dorsal hippocampus after morphine withdrawal, and the activation of p38 MAPK was blocked by pretreatment with norBNI. Accordingly, microinjection of p38 MAPK inhibitor SB203580 (5 µg) into the dorsal hippocampus significantly decreased morphine withdrawal-produced CPA behavior. This study demonstrates that upregulation of dynorphin/KOR system in the dorsal hippocampus plays a critical role in the formation of aversive emotion associated with morphine withdrawal, suggesting that KOR antagonists may have therapeutic value for the treatment of opioid withdrawal-induced mood-related disorders.


Subject(s)
Dynorphins , Substance Withdrawal Syndrome , Mice , Animals , Dynorphins/metabolism , Receptors, Opioid, kappa , Morphine , Analgesics, Opioid/pharmacology , Up-Regulation , Narcotic Antagonists/pharmacology , Hippocampus/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
9.
Eur J Pharmacol ; 937: 175387, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36372275

ABSTRACT

Koumine, an alkaloid, exerts therapeutic effects against rheumatoid arthritis (RA), and thus may have a potential application in novel treatment strategies against this disease. Herein, we investigated the regulatory effect of koumine on Th cell polarization using a "pyramid" structure model to elucidate the mechanism underlying its therapeutic effect on RA. The third layer of the model comprises the cytokine secretion layer, in which the effects of koumine on the balance of Th-related cytokines were investigated in mice with collagen-induced arthritis (CIA). Koumine showed significant therapeutic effects and reversed the imbalance of Th1/Th2 and Th17/Treg cytokines. In the Th cell polarization layer, the effects of koumine on the relative numbers of Th cell subsets in splenocytes of rats with CIA were examined. Koumine attenuated both of the increased Th1/Th2 and Th17/Treg subset ratios accompanied with its therapeutic effects. Finally, the primary cultured splenocytes from BALB/c mice were used to further investigate the effect of koumine on Th cell activation by evaluating cell proliferation induced by concanavalin A (Con A), lipopolysaccharides (LPS) and phytohemagglutinin (PHA). Koumine inhibited the cell proliferation responses and its effects on proliferation induced by Con A and PHA were greater than those by LPS, showing the relatively selective inhibition on the proliferation of Th cells. Our results suggest that koumine might restore the homeostasis of the network system with Th subsets and cytokines by inhibiting the activation of T cells, subsequently regulating the polarization of Th subsets and the downstream imbalance of pro/anti-inflammatory cytokines in RA.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Mice , Rats , Animals , Lipopolysaccharides/pharmacology , Arthritis, Rheumatoid/drug therapy , Arthritis, Experimental/drug therapy , Th17 Cells , T-Lymphocytes, Regulatory , Cytokines/pharmacology
10.
Neuropharmacology ; 221: 109275, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36195131

ABSTRACT

The lateral hypothalamus (LH) is an important brain region mediating sleep-wake behavior. Recent evidence has shown that astrocytes in central nervous system modulate the activity of adjacent neurons and participate in several physiological functions. However, the role of LH astrocytes in sleep-wake regulation remains unclear. Here, using synchronous recording of electroencephalogram/electromyogram in mice and calcium signals in LH astrocytes, we show that the activity of LH astrocytes is significantly increased during non-rapid eye movement (NREM) sleep-to-wake transitions and decreased during Wake-to-NREM sleep transitions. Chemogenetic activation of LH astrocytes potently promotes wakefulness and maintains long-term arousal, while chemogenetic inhibition of LH astrocytes decreases the total amount of wakefulness in mice. Moreover, by combining chemogenetics with fiber photometry, we show that activation of LH astrocytes significantly increases the calcium signals of adjacent neurons, especially among GABAergic neurons. Taken together, our results clearly illustrate that LH astrocytes are a key neural substrate regulating wakefulness and encode this behavior through surrounding GABAergic neurons. Our findings raise the possibility that overactivity of LH astrocytes may be an underlying mechanism of clinical sleep disorders.


Subject(s)
Hypothalamic Area, Lateral , Wakefulness , Animals , Mice , Wakefulness/physiology , Hypothalamic Area, Lateral/physiology , Astrocytes , Calcium , Sleep/physiology , GABAergic Neurons/physiology , Hypothalamus
11.
Phytomedicine ; 107: 154484, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36215787

ABSTRACT

BACKGROUND: Translocator protein (TSPO) is an 18-kDa transmembrane protein found primarily in the mitochondrial outer membrane, and it is implicated in inflammatory responses, such as cytokine release. Koumine (KM) is an indole alkaloid extracted from Gelsemium elegans Benth. It has been reported to be a high-affinity ligand of TSPO and to exert anti-inflammatory and immunomodulatory effects in our recent studies. However, the protective effect of KM on sepsis-associated liver injury (SALI) and its mechanisms are unknown. PURPOSE: To explore the role of TSPO in SALI and then further explore the protective effect and mechanism of KM on SALI. METHODS: The effect of KM on the survival rate of septic mice was confirmed in mouse models of caecal ligation and puncture (CLP)-induced and lipopolysaccharide (LPS)-induced sepsis. The protective effect of KM on CLP-induced SALI was comprehensively evaluated by observing the morphology of the mouse liver and measuring liver injury markers. The serum cytokine content was detected in mice by flow cytometry. Macrophage polarization in the liver was examined using western blotting. TSPO knockout mice were used to explore the role of TSPO in sepsis liver injury and verify the protective effect of KM on sepsis liver injury through TSPO. RESULTS: KM significantly improved the survival rate of both LPS- and CLP-induced sepsis in mice. KM has a significant liver protective effect on CLP-induced sepsis in mice. KM treatment ameliorated liver ischaemia, improved liver pathological injuries, and decreased the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH) and proinflammatory cytokines in serum. Western blotting results showed that KM inhibited M1 polarization of macrophages and promoted M2 polarization. In TSPO knockout mice, we found that TSPO knockout can improve the survival rate of septic mice, ameliorate liver ischaemia, improve liver pathological injuries, and decrease the levels of ALT, AST, and LDH. In addition, TSPO knockout inhibits the M1 polarization of macrophages in the liver of septic mice and promotes M2 polarization and the serum levels of proinflammatory cytokines. Interestingly, in TSPO knockout septic mice, these protective effects of KM were no longer effective. CONCLUSIONS: We report for the first time that TSPO plays a critical role in sepsis-associated liver injury by regulating the polarization of liver macrophages and reducing the inflammatory response. KM, a TSPO ligand, is a potentially desirable candidate for the treatment of SALI that may regulate macrophage M1/M2 polarization through TSPO in the liver.


Subject(s)
Lipopolysaccharides , Sepsis , Alanine Transaminase/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Aspartate Aminotransferases/metabolism , Carrier Proteins/metabolism , Cytokines/metabolism , Indole Alkaloids/pharmacology , Lactate Dehydrogenases/metabolism , Ligands , Lipopolysaccharides/pharmacology , Liver/metabolism , Macrophages , Mice , Mice, Knockout , Sepsis/complications , Sepsis/drug therapy , Sepsis/metabolism
12.
J Neurosci ; 42(43): 8184-8199, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36109166

ABSTRACT

Diabetic neuropathic pain (DNP) is a diabetes complication experienced by many patients. Ventrolateral periaqueductal gray (vlPAG) neurons are essential mediators of the descending pain modulation system, yet the role of vlPAG astrocytes in DNP remains unclear. The present study applied a multidimensional approach to elucidate the role of these astrocytes in DNP. We verified the activation of astrocytes in different regions of the PAG in male DNP-model rats. We found that only astrocytes in the vlPAG exhibited increased growth. Furthermore, we described differences in vlPAG astrocyte activity at different time points during DNP progression. After the 14th day of modeling, vlPAG astrocytes exhibited obvious activation and morphologic changes. Furthermore, activation of Gq-designer receptors exclusively activated by a designer drug (Gq-DREADDs) in vlPAG astrocytes in naive male rats induced neuropathic pain-like symptoms and pain-related aversion, whereas activation of Gi-DREADDs in vlPAG astrocytes in male DNP-model rats alleviated sensations of pain and promoted pain-related preference behavior. Thus, bidirectional manipulation of vlPAG astrocytes revealed their potential to regulate pain. Surprisingly, activation of Gi-DREADDs in vlPAG astrocytes also mitigated anxiety-like behavior induced by DNP. Thus, our results provide direct support for the hypothesis that vlPAG astrocytes regulate diabetes-associated neuropathic pain and concomitant anxiety-like behavior.SIGNIFICANCE STATEMENT Many studies examined the association between the ventrolateral periaqueductal gray (vlPAG) and neuropathic pain. However, few studies have focused on the role of vlPAG astrocytes in diabetic neuropathic pain (DNP) and DNP-related emotional changes. This work confirmed the role of vlPAG astrocytes in DNP by applying a more direct and robust approach. We used chemogenetics to bidirectionally manipulate the activity of vlPAG astrocytes and revealed that vlPAG astrocytes regulate DNP and pain-related behavior. In addition, we discovered that activation of Gi-designer receptors exclusively activated by a designer drug in vlPAG astrocytes alleviated anxiety-like behavior induced by DNP. Together, these findings provide new insights into DNP and concomitant anxiety-like behavior and supply new therapeutic targets for treating DNP.


Subject(s)
Designer Drugs , Diabetes Mellitus , Diabetic Neuropathies , Neuralgia , Male , Rats , Animals , Periaqueductal Gray/physiology , Astrocytes , Nociception/physiology , Motivation
13.
ACS Omega ; 7(34): 29692-29701, 2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36061709

ABSTRACT

To investigate the solid-state forms of koumine hydrochloride (KMY), solid form screening was performed, and one amorphous form and five crystalline forms (forms A, B, C, D, and E) were identified by powder X-ray diffraction. Form A was the dominant crystal product, and its crystal structure and packing pattern were determined by single-crystal X-ray diffraction. The crystals displayed an orthorhombic crystal system and symmetry of space group P212121 with Z' = 1. The amorphous form transformed to form A at 105-120 °C or 75% RH, while forms B, C, D, and E could only be intermediate phases and readily transformed to form A at room temperature. Therefore, the phase transformations of KMY solid-state forms were established. The properties of the amorphous form and form A were further elucidated by applying vibrational spectroscopy, moisture sorption analysis, and thermal analysis. Accordingly, form A, the KMY anhydrate, was found to be the thermodynamically stable form with low hygroscopicity under ambient conditions. These characteristics are crucial in the manufacture and storage of active pharmaceutical ingredients.

14.
Phytomedicine ; 103: 154225, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35689899

ABSTRACT

BACKGROUND: Koumine is the most abundant alkaloid extracted from Gelsemium elegans Benth.. Preliminary studies by our research group have shown that koumine has significant anxiolytic effect, but this needs to be further confirmed. HYPOTHESIS/PURPOSE: To investigate the potential anxiolytic effect of koumine on predatory sound (PS) stress-induced anxiety models and preliminarily explore its therapeutic targets and molecular mechanisms. STUDY DESIGN AND METHODS: The anxiolytic effect of koumine in an animal model of acute PS stress-induced anxiety were determined. Then, neurosteroids levels in the main brain regions involved in anxiety disorders, as well as plasma adrenocorticotropic hormone (ACTH) and corticosterone (CORT) levels, were determinated. Finally, to clarify the effect of koumine on translocator protein 18 kDa (TSPO), the affinity between koumine and TSPO was evaluated by surface plasmon resonance (SPR) technology. RESULTS: Koumine treatment mitigated anxiety-like behavior following acute PS stress in the open field test and elevated plus maze test. PS exposure significantly decreased progesterone and allopregnanolone levels in the PFC, Hip, and Amy and increased ACTH and CORT levels in plasma, and koumine administration significantly reversed these effects. Finally, the reliable SPR results showed that the KD of koumine with TSPO was 155.33 ± 11.0 µM, indicating that koumine is a human TSPO high-affinity ligand that has an affinity comparable to typical TSPO ligands. CONCLUSION: Our results show that koumine has obvious anxiolytic effect in the PS-induced anxiety model. Targeting TSPO-neurosteroids-HPA axis may be an important mechanism by which koumine exerts its anxiolytic effect.


Subject(s)
Anti-Anxiety Agents , Neurosteroids , Adrenocorticotropic Hormone , Animals , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/therapeutic use , Anxiety/drug therapy , Anxiety Disorders/drug therapy , Corticosterone , Hypothalamo-Hypophyseal System , Indole Alkaloids , Ligands , Pituitary-Adrenal System
15.
Neuropharmacology ; 208: 108979, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35131297

ABSTRACT

Defensive behavior, a group of responses that evolved due to threatening stimuli, is crucial for animal survival in the natural environment. For defensive measures to be timely and successful, a high arousal state and immediate sleep-to-wakefulness transition are required. Recently, the glutamatergic basal forebrain (BF) has been implicated in sleep-wake regulation; however, the associated physiological functions and underlying neural circuits remain unknown. Here, using in vivo fiber photometry, we found that BF glutamatergic neuron is activated by various threatening stimuli, including predator odor, looming threat, sound, and tail suspension. Optogenetic activation of BF glutamatergic neurons induced a series of context-dependent defensive behaviors in mice, including escape, fleeing, avoidance, and hiding. Similar to the effects of activated BF glutamatergic cell body, photoactivation of BF glutamatergic terminals in the ventral tegmental area (VTA) strongly drove defensive behaviors in mice. Using synchronous electroencephalogram (EEG)/electromyogram (EMG) recording, we showed that photoactivation of the glutamatergic BF-VTA pathway produced an immediate transition from sleep to wakefulness and significantly increased wakefulness. Collectively, our results clearly demonstrated that the glutamatergic BF is a key neural substrate involved in wakefulness and defensive behaviors, and encodes these behaviors through glutamatergic BF-VTA pathway. Overexcitation of the glutamatergic BF-VTA pathway may be implicated in clinical psychiatric diseases characterized by exaggerated defensive responses, such as autism spectrum disorders.


Subject(s)
Basal Forebrain , Wakefulness , Animals , Basal Forebrain/physiology , Electroencephalography/methods , Mesencephalon , Mice , Sleep/physiology , Wakefulness/physiology
16.
J Neurosci ; 42(13): 2662-2677, 2022 03 30.
Article in English | MEDLINE | ID: mdl-35165175

ABSTRACT

Palmitoylation may be relevant to the processes of learning and memory, and even disorders, such as post-traumatic stress disorder and aging-related cognitive decline. However, underlying mechanisms of palmitoylation in these processes remain unclear. Herein, we used acyl-biotin exchange, coimmunoprecipitation and biotinylation assays, and behavioral and electrophysiological methods, to explore whether palmitoylation is required for hippocampal synaptic transmission and fear memory formation, and involved in functional modification of synaptic proteins, such as postsynapse density-95 (PSD-95) and glutamate receptors, and detected if depalmitoylation by specific enzymes has influence on glutamatergic synaptic plasticity. Our results showed that global palmitoylation level, palmitoylation of PSD-95 and glutamate receptors, postsynapse density localization of PSD-95, surface expression of AMPARs, and synaptic strength of cultured hippocampal neurons were all enhanced by TTX pretreatment, and these can be reversed by inhibition of palmitoylation with palmitoyl acyl transferases inhibitors, 2-bromopalmitate and N-(tert-butyl) hydroxylamine hydrochloride. Importantly, we also found that acyl-protein thioesterase 1 (APT1)-mediated depalmitoylation is involved in palmitoylation of PSD-95 and glutamatergic synaptic transmission. Knockdown of APT1, not protein palmitoyl thioesterase 1, with shRNA, or selective inhibition, significantly increased AMPAR-mediated synaptic strength, palmitoylation levels, and synaptic or surface expression of PSD-95 and AMPARs. Results from hippocampal tissues and fear-conditioned rats showed that palmitoylation is required for synaptic strengthening and fear memory formation. These results suggest that palmitoylation and APT1-mediated depalmitoylation have critical effects on the regulation of glutamatergic synaptic plasticity, and it may serve as a potential target for learning and memory-associated disorders.SIGNIFICANCE STATEMENT Fear-related anxiety disorders, including post-traumatic stress disorder, are prevalent psychiatric conditions, and fear memory is associated with hyperexcitability in the hippocampal CA1 region. Palmitoylation is involved in learning and memory, but mechanisms coupling palmitoylation with fear memory acquisition remain poorly understood. This study demonstrated that palmitoylation is essential for postsynapse density-95 clustering and hippocampal glutamatergic synaptic transmission, and APT1-mediated depalmitoylation plays critical roles in the regulation of synaptic plasticity. Our study revealed that molecular mechanism about downregulation of APT1 leads to enhancement of AMPAR-mediated synaptic transmission, and that palmitoylation cycling is implicated in fear conditioning-induced synaptic strengthening and fear memory formation.


Subject(s)
Hippocampus , Synapses , Animals , Hippocampus/metabolism , Mice , Mice, Inbred C57BL , Neuronal Plasticity , Rats , Synapses/metabolism , Synaptic Transmission/physiology
17.
Eur J Pharmacol ; 914: 174690, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34890543

ABSTRACT

Dysregulated activation of polyclonal B cells and production of pathogenic antibodies are involved in the development of rheumatoid arthritis (RA). Therefore, targeted B cell therapy is effective against RA. Gelsemium elegans (Gardn. & Champ.) Benth., a toxic plant widely distributed in Southeast Asia, has been used for treating rheumatoid pain, neuropathic pain, spasticity, skin ulcers, and cancers for many years in traditional Chinese medicine. Koumine, an alkaloid monomer from Gelsemium elegans Benth., exerts therapeutic effects against RA. However, whether koumine affects B cells remains unknown. In this study, the effect of koumine on B cells under T cell-independent (TI) and T cell-dependent (TD) immune responses is investigated in vitro and in vivo. Mouse primary B cells were obtained by immunomagnetic bead sorting, and immunomodulatory effects of koumine on the activation, proliferation, and differentiation of B cells were determined in TI and TD models induced by lipopolysaccharide (LPS) and anti-CD40 antibodies in vitro, respectively. The humoral immune responses of TI and TD were established using NP-AECM-FICOLL and NP-CGG in C57BL/6J mice, respectively. We found that koumine inhibited B cell differentiation in the TI model and inhibited B cell activation and proliferation in the TD model in vitro. Koumine also inhibited antibody secretion in TI immune response, TD initial immune response, and in TD secondary immune response. Our results reveal that koumine has a direct and indirect immune regulatory effect on B cells, showing that it can directly inhibit the differentiation and secretion of autoantibodies after abnormal activation of B cells, and indirectly inhibit the activation and proliferation of TD B cells to reduce the secretion of antibodies. It may be an important mechanism for its anti-RA effect in mice, providing a rationale and laboratory data support for the application of koumine in anti-human RA therapy.


Subject(s)
Arthritis, Rheumatoid , B-Lymphocytes , Gelsemium , Indole Alkaloids/pharmacology , T-Lymphocytes/immunology , Animals , Antibody Formation/drug effects , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/immunology , Autoantibodies/blood , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , Cell Differentiation/drug effects , Drugs, Chinese Herbal/pharmacology , Immunity, Cellular/drug effects , Immunity, Cellular/immunology , Immunomodulating Agents/pharmacology , Lymphocyte Cooperation/immunology , Medicine, Chinese Traditional , Mice
18.
Front Pharmacol ; 12: 806091, 2021.
Article in English | MEDLINE | ID: mdl-34950042

ABSTRACT

Gelsemium elegans (G. elegans) Benth., recognized as a toxic plant, has been used as traditional Chinese medicine for the treatment of neuropathic pain and cancer for many years. In the present study, we aim to obtain the anti-tumor effects of alkaloids of G. elegans and their active components in hepatocellular carcinoma (HCC) and the potential mechanism was also further investigated. We demonstrated that sempervirine induced HCC cells apoptosis and the apoptosis was associated with cell cycle arrest during the G1 phase, up-regulation of p53 and down-regulation of cyclin D1, cyclin B1 and CDK2. Furthermore, sempervirine inhibited HCC tumor growth and enhances the anti-tumor effect of sorafenib in vivo. In addition, inactivation of Wnt/ß-catenin pathway was found to be involved in sempervirine-induced HCC proliferation. The present study demonstrated that alkaloids of G. elegans were a valuable source of active compounds with anti-tumor activity. Our findings justified that the active compound sempervirine inhibited proliferation and induced apoptosis in HCC by regulating Wnt/ß-catenin pathway.

19.
Drug Deliv ; 28(1): 2415-2426, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34763595

ABSTRACT

Koumine (KME) is an active alkaloid extracted from Gelsemium elegans, and its diverse bioactivities have been studied for decades. However, KME exhibits poor solubility and low oral bioavailability, which hampers its potential therapeutic exploitation. This work aimed to develop optimized inclusion complexes to improve the bioavailability of KME. The KME/hydroxypropyl-ß-cyclodextrin (KME/HP-ß-CD) inclusion complexes were prepared by the solvent evaporation method and later optimized using the Box-Behnken design. The optimal KME/HP-ß-CD was characterized by scanning electron microscopy, Fourier transforms infrared spectroscopy, differential scanning calorimetry, and nuclear magnetic resonance spectroscopy. The physicochemical characterization results revealed that the crystalline state of KME was transformed into an amorphous form, forming KME/HP-ß-CD inclusion complexes. Compared with KME, the solubility and in vitro release rate of KME/HP-ß-CD was significantly enhanced by 52.34- and 1.3-fold, respectively. Further research was performed to investigate the intestinal absorption characteristics and in vivo bioavailability in rats. The optimal KME/HP-ß-CD showed enhanced absorptive permeability and relative bioavailability increased more than two-fold compared to that of raw KME. These results indicate that the optimal KME/HP-ß-CD can be used as an effective drug carrier to improve the solubility, intestinal absorption, and bioavailability of KME.


Subject(s)
2-Hydroxypropyl-beta-cyclodextrin/chemistry , Drug Carriers/chemistry , Indole Alkaloids/administration & dosage , Indole Alkaloids/pharmacokinetics , Administration, Oral , Animals , Area Under Curve , Calorimetry, Differential Scanning , Cell Line, Tumor , Cell Survival , Chemistry, Pharmaceutical , Drug Liberation , Humans , Intestinal Absorption , Male , Microscopy, Electron, Scanning , Random Allocation , Rats , Rats, Sprague-Dawley , Solubility , Spectroscopy, Fourier Transform Infrared
20.
Front Pharmacol ; 12: 739618, 2021.
Article in English | MEDLINE | ID: mdl-34671258

ABSTRACT

Translocator protein 18 kDa (TSPO) is an evolutionarily conserved 5-transmembrane domain protein, and has been considered as an important therapeutic target for the treatment of pain. We have recently reported the in vitro and in vivo pharmacological characterization of koumine as a TSPO positive allosteric modulator (PAM), more precisely ago-PAM. However, the probe dependence in the allostery of koumine is an important question to resolve, and the possible analgesic mechanism of koumine remains to be clarified. Here, we report the in vivo evaluation of the allostery of koumine when orthosteric ligand PK11195 was used and preliminarily explore the possible analgesic mechanism of koumine associated with neurosteroids. We find that koumine is an ago-PAM of the PK11195-mediated analgesic effect at TSPO, and the analgesic mechanism of this TSPO ago-PAM may be associated with neurosteroids as the analgesic effects of koumine in the formalin-induced inflammatory pain model and chronic constriction injury-induced neuropathic pain model can be antagonized by neurosteroid synthesis inhibitor aminoglutethimide. Although our results cannot fully clarify the allosteric modulatory effect of koumine, it further prove the allostery in TSPO and provide a solid foundation for koumine to be used as a new clinical candidate drug to treat pain.

SELECTION OF CITATIONS
SEARCH DETAIL
...