Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Plants ; 6(9): 1194, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32724167

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2.
PLoS Genet ; 16(6): e1008849, 2020 06.
Article in English | MEDLINE | ID: mdl-32516352

ABSTRACT

Cohesin, a multisubunit protein complex, is required for holding sister chromatids together during mitosis and meiosis. The recruitment of cohesin by the sister chromatid cohesion 2/4 (SCC2/4) complex has been extensively studied in Saccharomyces cerevisiae mitosis, but its role in mitosis and meiosis remains poorly understood in multicellular organisms, because complete loss-of-function of either gene causes embryonic lethality. Here, we identified a weak allele of Atscc2 (Atscc2-5) that has only minor defects in vegetative development but exhibits a significant reduction in fertility. Cytological analyses of Atscc2-5 reveal multiple meiotic phenotypes including defects in chromosomal axis formation, meiosis-specific cohesin loading, homolog pairing and synapsis, and AtSPO11-1-dependent double strand break repair. Surprisingly, even though AtSCC2 interacts with AtSCC4 in vitro and in vivo, meiosis-specific knockdown of AtSCC4 expression does not cause any meiotic defect, suggesting that the SCC2-SCC4 complex has divergent roles in mitosis and meiosis. SCC2 homologs from land plants have a unique plant homeodomain (PHD) motif not found in other species. We show that the AtSCC2 PHD domain can bind to the N terminus of histones and is required for meiosis but not mitosis. Taken together, our results provide evidence that unlike SCC2 in other organisms, SCC2 requires a functional PHD domain during meiosis in land plants.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Carrier Proteins/genetics , Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Meiosis/genetics , PHD Zinc Fingers/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Carrier Proteins/metabolism , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/genetics , Chromosomal Proteins, Non-Histone/chemistry , Chromosomal Proteins, Non-Histone/genetics , Gene Knockdown Techniques , Genome, Plant/genetics , Loss of Function Mutation , Mitosis/genetics , Morphogenesis/genetics , Mutagenesis , Plants, Genetically Modified , Pollination/genetics , Whole Genome Sequencing , Cohesins
3.
Nat Plants ; 6(7): 823-837, 2020 07.
Article in English | MEDLINE | ID: mdl-32572214

ABSTRACT

Histone demethylation is crucial for proper chromatin structure and to ensure normal development, and requires the large family of Jumonji C (JmjC)-containing demethylases; however, the molecular mechanisms that regulate the substrate specificity of these JmjC-containing demethylases remain largely unknown. Here, we show that the substrate specificity of the Arabidopsis histone demethylase JMJ16 is broadened from Lys 4 of histone H3 (H3K4) alone in somatic cells to both H3K4 and H3K9 when it binds to the meiocyte-specific histone reader MMD1. Consistent with this, the JMJ16 catalytic domain exhibits both H3K4 and H3K9 demethylation activities. Moreover, the JMJ16 C-terminal FYR domain interacts with the JMJ16 catalytic domain and probably restricts its substrate specificity. By contrast, MMD1 can compete with the N-terminal catalytic domain of JMJ16 for binding to the FYR-C domain, thereby expanding the substrate specificity of JMJ16 by preventing the FYR domain from binding to the catalytic domain. We propose that MMD1 and JMJ16 together in male meiocytes promote gene expression in an H3K9me3-dependent manner and thereby contribute to meiotic chromosome condensation.


Subject(s)
Arabidopsis Proteins/physiology , Arabidopsis/enzymology , Chromosomes, Plant/metabolism , Histone Demethylases/physiology , Meiosis , Arabidopsis/physiology , Arabidopsis Proteins/metabolism , Catalytic Domain , Epigenesis, Genetic , Gene Expression Regulation, Plant , Histone Demethylases/metabolism , Meiosis/physiology , Substrate Specificity
4.
Nucleic Acids Res ; 47(15): 7886-7900, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31216029

ABSTRACT

The intron-lariat spliceosome (ILS) complex is highly conserved among eukaryotes, and its disassembly marks the end of a canonical splicing cycle. In this study, we show that two conserved disassembly factors of the ILS complex, Increased Level of Polyploidy1-1D (ILP1) and NTC-Related protein 1 (NTR1), positively regulate microRNA (miRNA) biogenesis by facilitating transcriptional elongation of MIRNA (MIR) genes in Arabidopsis thaliana. ILP1 and NTR1 formed a stable complex and co-regulated alternative splicing of more than a hundred genes across the Arabidopsis genome, including some primary transcripts of miRNAs (pri-miRNAs). Intriguingly, pri-miRNAs, regardless of having introns or not, were globally down-regulated when the ILP1 or NTR1 function was compromised. ILP1 and NTR1 interacted with core miRNA processing proteins Dicer-like 1 and Serrate, and were required for proper RNA polymerase II occupancy at elongated regions of MIR chromatin, without affecting either MIR promoter activity or pri-miRNA decay. Our results provide further insights into the regulatory role of spliceosomal machineries in the biogenesis of miRNAs.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Genome, Plant , MicroRNAs/genetics , Periplasmic Binding Proteins/genetics , RNA Splicing , Repressor Proteins/metabolism , Spliceosomes/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Exons , Gene Expression Regulation, Plant , Introns , MicroRNAs/biosynthesis , Periplasmic Binding Proteins/metabolism , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Ribonuclease III/genetics , Ribonuclease III/metabolism , Spliceosomes/metabolism
5.
Proc Natl Acad Sci U S A ; 116(9): 3899-3908, 2019 02 26.
Article in English | MEDLINE | ID: mdl-30760603

ABSTRACT

During RNA-directed DNA methylation (RdDM), the DDR complex, composed of DRD1, DMS3, and RDM1, is responsible for recruiting DNA polymerase V (Pol V) to silence transposable elements (TEs) in plants. However, how the DDR complex is regulated remains unexplored. Here, we show that the anaphase-promoting complex/cyclosome (APC/C) regulates the assembly of the DDR complex by targeting DMS3 for degradation. We found that a substantial set of RdDM loci was commonly de-repressed in apc/c and pol v mutants, and that the defects in RdDM activity resulted from up-regulated DMS3 protein levels, which finally caused reduced Pol V recruitment. DMS3 was ubiquitinated by APC/C for degradation in a D box-dependent manner. Competitive binding assays and gel filtration analyses showed that a proper level of DMS3 is critical for the assembly of the DDR complex. Consistent with the importance of the level of DMS3, overaccumulation of DMS3 caused defective RdDM activity, phenocopying the apc/c and dms3 mutants. Moreover, DMS3 is expressed in a cell cycle-dependent manner. Collectively, these findings provide direct evidence as to how the assembly of the DDR complex is regulated and uncover a safeguarding role of APC/C in the regulation of RdDM activity.


Subject(s)
Anaphase-Promoting Complex-Cyclosome/genetics , Arabidopsis Proteins/genetics , Chromosomal Proteins, Non-Histone/genetics , DNA Methylation/genetics , DNA-Directed RNA Polymerases/genetics , Anaphase-Promoting Complex-Cyclosome/chemistry , Arabidopsis/genetics , Arabidopsis Proteins/chemistry , Chromosomal Proteins, Non-Histone/chemistry , DNA Transposable Elements/genetics , DNA-Directed RNA Polymerases/chemistry , Discoidin Domain Receptors/chemistry , Discoidin Domain Receptors/genetics , Gene Expression Regulation, Plant , Gene Silencing , Multiprotein Complexes/chemistry , Multiprotein Complexes/genetics , RNA, Plant/genetics , RNA, Small Interfering/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...