Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 13(6)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38592766

ABSTRACT

α-Linolenic acid (ALA) is an important nutrient component in rapeseed oil, and rapeseed breeders want to either restrain or enhance the function of fatty acid desaturases (FADs) in the ALA biosynthesis pathway. To determine the reason for the upregulation of rapeseed BnFAD genes in two high-ALA accessions, R8Q10 and YH25005, we compared their transcriptome profiles in the seed at 24 days after pollination (DAP) with those of two low-ALA lines, A28 and SW. The expression levels of twenty-eight important genes in the seed samples at 20, 27, and 34 DAP were also investigated using an RT-qPCR. The expression levels of genes involved in flavonoid and proanthocyanidin synthesis, including BnCHS, BnCHI, BnDFR, BnFLS1, BnLDOX, BnBAN, BnTT10, and BnTT12 and genes encoding the transcription factors BnTT1, BnTT2, BnTT8, and BnTT16 were lower in R8Q10 and YH25005 than in A28 and SW. The expression levels of genes encoding master transcription factors in embryo development, such as BnLEC1, BnABI3, BnFUS3, BnL1L, BnAREB3, and BnbZIP67, were elevated significantly in the two high-ALA accessions. Combined with previous results in the Arabidopsis and rapeseed literature, we speculated that the yellow-seededness genes could elevate the activity of BnLEC1, BnABI3, BnFUS3, and BnbZIP67, etc., by reducing the expression levels of several transparent testa homologs, resulting in BnFAD3 and BnFAD7 upregulation and the acceleration of ALA synthesis. Yellow-seededness is a favorable factor to promote ALA synthesis in the two high-ALA accessions with the yellow-seeded trait. These findings provide initial insights into the transcriptomic differences between high-/low-ALA germplasms and a theoretic basis for seed quality breeding.

2.
J Plant Physiol ; 294: 154187, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38422630

ABSTRACT

Rapeseed (Brassica napus L.) is one of the most important oil crops worldwide. However, its yield is greatly limited by salt stress, one of the primary abiotic stresses. Identification of salt-tolerance genes and breeding salt-tolerant varieties is an effective approach to address this issue. Unfortunately, little is known about the salt-tolerance quantitative trait locus (QTL) and the identification of salt tolerance genes in rapeseed. In this study, high-throughput quantitative trait locus sequencing (QTL-seq) was applied to identifying salt-tolerant major QTLs based on two DNA pools from an F2:3 population of a cross between rapeseed line 2205 (salt tolerant) and 1423 (salt sensitive). A total of twelve major QTLs related to the salt tolerance rating (STR) were detected on chromosomes A03, A08, C02, C03, C04, C06, C07 and C09. To further enhance our understanding, we integrated QTL-seq data with transcriptome analysis of the two parental rapeseed plants subjected to salt stress, through which ten candidate genes for salt tolerance were identified within the major QTLs by gene differential expression, variation and annotated functions analysis. The marker SNP820 linked to salt tolerance was successfully validated and would be useful as a diagnostic marker in marker-assisted breeding. These findings provide valuable insights for future breeding programs aimed at developing rapeseed cultivars resistant to salt stresses.


Subject(s)
Brassica napus , Quantitative Trait Loci , Quantitative Trait Loci/genetics , Chromosome Mapping , Brassica napus/genetics , Gene Expression Profiling , High-Throughput Nucleotide Sequencing
3.
Front Bioinform ; 2: 1027457, 2022.
Article in English | MEDLINE | ID: mdl-36438626

ABSTRACT

With the rapid development of next-generation sequencing (NGS), multi-omics techniques have been emerging as effective approaches for crop improvement. Here, we focus mainly on addressing the current status and future perspectives toward omics-related technologies and bioinformatic resources with potential applications in crop breeding. Using a large amount of omics-level data from the functional genome, transcriptome, proteome, epigenome, metabolome, and microbiome, clarifying the interaction between gene and phenotype formation will become possible. The integration of multi-omics datasets with pan-omics platforms and systems biology could predict the complex traits of crops and elucidate the regulatory networks for genetic improvement. Different scales of trait predictions and decision-making models will facilitate crop breeding more intelligent. Potential challenges that integrate the multi-omics data with studies of gene function and their network to efficiently select desirable agronomic traits are discussed by proposing some cutting-edge breeding strategies for crop improvement. Multi-omics-integrated approaches together with other artificial intelligence techniques will contribute to broadening and deepening our knowledge of crop precision breeding, resulting in speeding up the breeding process.

4.
Int J Mol Sci ; 23(17)2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36077359

ABSTRACT

Powdery mildew is a widespread disease in rapeseed due to a lack of resistant germplasm. We compared the foliar epidermal features and transcriptomic responses between the resistant (R) and susceptible (S) plants among the two parents and progenies of Brassica carinata × B. napus. The amount of cuticular wax and callose deposition on the R plants was much lower than that on the S plants; hence, these chemicals are not all essential to pre-penetration resistance, although the cuticular wax on the R plants had more needle-like crystals. A total of 1049 genes involved in various defense responses were expressed differentially among the R/S plants. The expression levels of two well-known susceptibility genes, MLO6 and MLO12, were much lower in the R plant, indicating an important role in PM resistance. A set of genes related to wax biosynthesis (KCS6, LACS2, CER and MAH1), cell wall modification (PMR5, PMEI9, RWA2, PDCB1 and C/VIF2), chloroplast function (Chlorophyllase-1, OEP161, PSBO1, CP29B and CSP41b), receptor kinase activity (ERECTA, BAK1, BAM2, LYM1, LYM3, RLK902, RLP11, ERL1 and ERL2), IPCS2, GF14 lambda, RPS4 and RPS6 were highly expressed in the R plants. In the S plants, most highly expressed genes were involved in later defense responses, including CERK1, LYK4, LIK1, NIMIN-1, CHITINASE 10, PECTINESTERASE, CYP81F2 and RBOHF and the genes involved in salicylic acid-dependent systemic acquired resistance and hypersensitive responses, indicating the occurrence of severe fungal infection. The results indicate that some uncertain pre-penetration defenses are pivotal for high resistance, while post-penetration defenses are more important for the S plant survival.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Ascomycota , Brassica , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Ascomycota/genetics , Brassica/genetics , Disease Resistance/genetics , Erysiphe , Plant Diseases/genetics , Plant Diseases/microbiology , Protein Kinases/metabolism , Protein Serine-Threonine Kinases , Transcriptome
5.
Genes (Basel) ; 13(8)2022 07 22.
Article in English | MEDLINE | ID: mdl-35893035

ABSTRACT

Plasmodiophora brassicae infection leads to hypertrophy of host roots and subsequent formation of galls, causing huge economic losses to agricultural producers of Cruciferae plants. Ethylene (ET) has been reported to play a vital role against necrotrophic pathogens in the classic immunity system. More clues suggested that the defense to pathogens in roots may be different from the acrial. The ET pathway may play a positive role in the infection of P. brassicae, as shown by recent transcriptome profiling. However, the molecular basis of ET remains poorly understood. In this study, we investigated the potential role of ethylene against P. brassicae infection in an ein3/eil1 double-mutant of Arabidopsis thaliana (A. thaliana). After infection, ein3/eil1 (Disease Index/DI: 93) showed more susceptibility compared with wild type (DI: 75). Then, we inoculated A. thaliana Columbia-0 (Col-0) with P. brassicae by 1-aminocyclopropane-1-carboxylic acid (ACC) and pyrazinamide (PZA), respectively. It was found that the symptoms of infected roots with ACC were more serious than those with PZA at 20 dpi (day post infection). However, the DI were almost the same in different treatments at 30 dpi. WRKY75 can be directly regulated by ET and was upregulated at 7 dpi with ACC, as shown by qRT-PCR. The wrky75-c mutant of A. thaliana (DI: 93.75) was more susceptible than the wild type in Arabidopsis. Thus, our work reveals the dual roles of ET in infection of P. brassicae and provides evidence of ET in root defense against pathogens.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Plasmodiophorida , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Ethylenes/metabolism , Ethylenes/pharmacology , Plant Roots/genetics , Plant Roots/metabolism
6.
Breed Sci ; 70(3): 387-395, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32714062

ABSTRACT

Powdery mildew (PM), caused by Erysiphe cruciferarum, is an epidemic of oil rapeseed (Brassica napus L.) growing worldwide, but PM resistant germplasm is rare in this species. We screened 102 accessions of B. napus and other cruciferous species and found an Ethiopian mustard (Brassica carinata) cultivar 'White flower' immune to PM in both the field and greenhouse. Outcrossing in the female parent 'White flower' was promoted by using a chemical gametocide tribenuron-methyl, to obtain hybrid seeds of distant hybridization with an elite B. napus cultivar 'Zhongshuang11'. Three true F1 hybrids with B. carinata cytoplasm were obtained without using embryo rescue, which showed complete male sterility and light yellow petals. The hybrid plants and the progenies derived from backcrossing were validated using morphological traits, seed quality, and molecular markers. Five lines in the BC1F3 generation, named 'W7-1', 'W7-4', 'W7-6', 'W8-1', and 'W8-3', and one BC2F2 line 'W3PS-1', whose young leaf was yellow green, were identified to be resistant or moderately resistant to PM. The seed quality and some morphological traits of these lines resembled the parent 'Zhongshuang11', indicating that the resistance gene(s) has been preliminarily introduced into B. napus.

7.
BMC Plant Biol ; 20(1): 69, 2020 Feb 11.
Article in English | MEDLINE | ID: mdl-32046649

ABSTRACT

BACKGROUND: Acetolactate synthase (ALS)-inhibiting herbicides from the chemical families of sulfonylureas and imidazolinones are used worldwide. However, drift or sprayer contamination from some sulfonylurea herbicides causes a high level of male sterility in cruciferous species, especially oilseed rape (OSR). In this paper, we evaluated the gametocidal effects of 27 ALS-inhibiting herbicides that were sprayed on OSR plants at the bolting stage. RESULTS: OSR anther development was very sensitive to sublethal exposure to most ALS-inhibiting herbicides. The application of 18 out of the 20 tested sulfonylureas (except ethametsulfuron and ethoxysulfuron), two imidazolinones (imazethapyr and imazamox), and one sulfonylamino-carbonyltriazolinone (flucarbazone-sodium) at suitable rates could induce male sterility. Eight of the herbicides, including chlorsulfuron (at application rates of 60-120 mg/ha), halosulfuron-methyl (300-600 mg/ha), sulfosulfuron (400-600 mg/ha), triflusulfuron-methyl (500-750 mg/ha), pyrazosulfuron-ethyl (150-225 mg/ha), nicosulfuron (200-300 mg/ha), imazethapyr (750-1125 mg/ha), and imazamox (400-800 mg/ha), could induce over 90% male sterility and over 60% relative outcrossed seed set in six cultivars with different origins. These eight chemicals could be used as new gametocides for hybrid seed production. This study also examined the possibility of external application of these gametocides on several unstable Polima cytoplasmic male sterile and thermosensitive genic male sterile lines. Although the outcrossed seed set of the treated lines was slightly reduced, the gametocide application significantly increased the seed purity of the resulting hybrid. CONCLUSION: The finding of the gametocidal effects of most sulfonylureas and imidazolinones are of great importance for developing new functions for ALS-inhibiting herbicides. The application of gametocides will also greatly promote the safe utilization of environment-sensitive male sterility in hybrid seed production. Unexpectedly, the application of three triazolopyrimidines (florasulam, flumetsulam, and penoxsulam) and one pyrimidinylthiobenzoate (bispyribac-sodium) did not cause male sterility, although these herbicides obviously inhibited the activity of ALS and plant growth. This result suggests that inhibition of ALS activity does not always lead to male sterility in plants, and these gametocides may also inhibit other biological functions vital for microspore development.


Subject(s)
Brassica napus/drug effects , Herbicides/administration & dosage , Imidazoles/administration & dosage , Seeds/drug effects , Sulfonylurea Compounds/administration & dosage , Brassica napus/genetics , Brassica napus/physiology , Crosses, Genetic , Hybridization, Genetic , Reproduction , Seeds/genetics , Seeds/physiology
8.
BMC Plant Biol ; 19(1): 124, 2019 Apr 02.
Article in English | MEDLINE | ID: mdl-30940071

ABSTRACT

BACKGROUND: Acetolactate synthase (ALS)-inhibiting herbicide tribenuron-methyl (TBM) is an efficient gametocide that can cause rapeseed (Brassica napus L.) to become male sterile and outcrossing. To find the reason the TBM treatment leads to male sterility, an integrated study using cytological, physiological, and transcriptomic methods was conducted. RESULTS: Some temporary symptoms, including the discoloration of young leaves and a short halt of raceme elongation, were observed in the rapeseed plants exposed to TBM at an application rate of 1 µg per plant. Both chloroplasts in young leaves and plastids in anthers were deformed. TBM also reduced the leaf photosynthetic rate and the contents of chlorophyll, soluble sugar and pyruvate. Both the tapetal cells and uni-nucleate microspores in the treated plants showed large autophagic vacuoles, and the tissue degenerated quickly. A transcriptomic comparison with the control identified 200 upregulated and 163 downregulated differential expression genes in the small flower buds of the TBM treatment. The genes encoding functionally important proteins, including glucan endo-1,3-beta-glucosidase A6, QUARTET3 (QRT3), ARABIDOPSIS ANTHER 7 (ATA7), non-specific lipid-transfer protein LTP11 and LTP12, histone-lysine N-methyltransferase ATXR6, spermidine coumaroyl-CoA acyltransferase (SCT), and photosystem II reaction centre protein psbB, were downregulated by TBM exposure. Some important genes encoding autophagy-related protein ATG8a and metabolic detoxification related proteins, including DTX1, DTX6, DTX35, cytosolic sulfotransferase SOT12, and six members of glutathione S-transferase, were upregulated. In addition, several genes related to hormone stimulus, such as 1-aminocyclopropane-1-carboxylate synthase 8 (ACS8), ethylene-responsive factor ERF1A, ERF1, ERF71, CRF6, and RAP2-3, were also upregulated. The transcriptional regulation is in accordance with the functional abnormalities of pollen wall formation, lipid metabolism, chloroplast structure, ethylene generation, cell cycle, and tissue autophagy. CONCLUSION: The results suggested that except for ALS, the metabolic pathways related to lipid metabolism, pollen exine formation, photosynthesis and hormone response are associated with male sterility induced by TBM. The results provide new insight into the molecular mechanisms of inducing male sterility by sulfonylurea.


Subject(s)
Acetolactate Synthase/antagonists & inhibitors , Arylsulfonates/pharmacology , Brassica napus/drug effects , Gene Expression Regulation, Plant/drug effects , Herbicides/pharmacology , Plant Infertility/drug effects , Acetolactate Synthase/metabolism , Brassica napus/enzymology , Brassica napus/physiology , Down-Regulation/drug effects , Gene Expression Regulation, Developmental/drug effects , Photosynthesis/drug effects , Plant Leaves/drug effects , Plant Leaves/enzymology , Plant Leaves/physiology , Plant Proteins/antagonists & inhibitors , Plant Proteins/metabolism
9.
Front Plant Sci ; 8: 1625, 2017.
Article in English | MEDLINE | ID: mdl-28983304

ABSTRACT

Background: Acetolactate synthase (ALS)-inhibiting herbicides amidosulfuron (Hoestar) is an efficient gametocide that can induce male sterility in rapeseed (Brassica napus L.). We conducted an integrated study of cytological, transcriptomic, and physiological analysis to decipher the gametocidal effect of amidosulfuron. Results: In the first several days after exposure to amidosulfuron at a gametocidal dose of ca. 1 µg per plant, the plants showed the earliest symptoms including short retard of raceme elongation, slight chlorosis on leaf, and decrease of photosynthesis rate. Chloroplasts in leaf and anther epidermis, and tapetal plastids were deformed. Both tapetal cell and uni-nucleate microspore showed autophagic vacuoles and degenerated quickly. The amidosulfuron treatment caused reduction of photosynthetic rate and the contents of leaf chlorophyll, soluble sugar and pyruvate, as well as content alteration of several free amino acids in the treated plants. A comparison of transcriptomic profiling data of the young flower buds of the treated plants with the control identified 142 up-regulated and 201 down-regulated differential expression transcripts with functional annotations. Down-regulation of several interesting genes encoding PAIR1, SDS, PPD2, HFM1, CSTF77, A6, ALA6, UGE1, FLA20, A9, bHLH91, and putative cell wall protein LOC106368794, and up-regulation of autophagy-related protein ATG8A indicated functional abnormalities about cell cycle, cell wall formation, chloroplast structure, and tissue autophagy. Ethylene-responsive transcription factor RAP2-11-like was up-regulated in the flower buds and ethylene release rate was also elevated. The transcriptional regulation in the amidosulfuron-treated plants was in line with the cytological and physiological changes. Conclusions: The results suggested that metabolic decrease related to photosynthesis and energy supply are associated with male sterility induced by amidosulfuron. The results provide insights into the molecular mechanisms of gametocide-induced male sterility and expand the knowledge on the transcriptomic complexity of the plants exposure to sulfonylurea herbicide.

10.
Front Plant Sci ; 8: 1268, 2017.
Article in English | MEDLINE | ID: mdl-28775729

ABSTRACT

The thermo-sensitive genic male sterility (TGMS) line SP2S is a spontaneous rapeseed mutation with several traits that are favorable for the production of two-line hybrids. To uncover the key cellular events and genetic regulation associated with TGMS expression, a combined study using cytological observation, transcriptome profiling, and gene expression analysis was conducted for SP2S and its near-isogenic line SP2F grown under warm conditions. Asynchronous microsporocyte meiosis and abnormal tapetal plastids and elaioplasts were demonstrated in the anther of SP2S. The tetrad microspore did not undergo mitosis before the cytoplasm degenerated. Delayed degradation of the tetrad wall, which led to tetrad microspore aggregation, resulted in postponement of sexine (outer layer of pollen exine) formation and sexine fusion in the tetrad. The nexine (foot layer of exine) was also absent. The delay of tetrad wall degradation and abnormality of the exine structure suggested that the defective tapetum lost important functions. Based on transcriptomic comparisons between young flower buds of SP2S and SP2F plants, a total of 465 differentially expressed transcripts (DETs) were identified, including 303 up-regulated DETs and 162 down-regulated DETs in SP2S. Several genes encoding small RNA degrading nuclease 2, small RNA 2'-O-methyltransferase, thioredoxin reductase 2, regulatory subunit A alpha isoform of serine/threonine-protein phosphatase 2A, glycine rich protein 1A, transcription factor bHLH25, leucine-rich repeat receptor kinase At3g14840 like, and fasciclin-like arabinogalactan proteins FLA19 and FLA20 were greatly depressed in SP2S. Interestingly, a POLLENLESS3-LIKE 2 gene encoding the Arabidopsis MS5 homologous protein, which is necessary for microsporocyte meiosis, was down-regulated in SP2S. Other genes that were up-regulated in SP2S encoded glucanase A6, ethylene-responsive transcription factor 1A-like, pollen-specific SF3, stress-associated endoplasmic reticulum protein 2, WRKY transcription factors and pentatricopeptide repeat (PPR) protein At1g07590. The tapetum-development-related genes, including BnEMS1, BnDYT1, and BnAMS, were slightly up-regulated in 3-mm-long flower buds or their anthers, and their downstream genes, BnMS1 and BnMYB80, which affect callose dissolution and exine formation, were greatly up-regulated in SP2S. This aberrant genetic regulation corresponded well with the cytological abnormalities. The results suggested that expression of TGMS associates with complex transcriptional regulation.

11.
BMC Plant Biol ; 17(1): 95, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28571580

ABSTRACT

BACKGROUND: For most cruciferous plants, which are known as important crops and a number of weeds, hybrid breeding is hampered by the unavailability of a pollination control system. Male sterility induced by a gametocide can be useful for the utilization of plant heterosis. RESULTS: The gametocidal effect of sulfonylurea herbicide tribenuron-methyl was tested across seventeen cruciferous species or subspecies including Brassica juncea, B. carinata, B. oleracea ssp. capitata, B. oleracea ssp. acephala, B. rapa ssp. pekinensis, B. rapa ssp. chinensis, B. rapa ssp. parachinensis, B. nigra, Orychophragmus violaceus, Matthiola incana, Raphanus sativa, Sisymbrium altissimum, Eruca sativa, Sinapis alba, Sinapis arvensis, Capsella bursa-pastoris and Camelina sativa. The plants of 23 cultivars in these species or subspecies were foliar sprayed with 10 ml of 0.2 or 0.4 mg/L of tribenuron-methyl before the vacuolated microspore formed in the largest flower buds; the application was repeated ten to twelve days afterwards. Tribenuron-methyl exposure significantly changed the flowering phenology and reproductive function. The treated plants demonstrated a one to four day delay in flowering time and a shortened duration of flowering, as well as other slight phytotoxic effects including a reduction in plant height and floral organ size. Approximately 80% to 100% male sterility, which was estimated by both pollen staining and selfing seed-set rate, was induced in the plants. As a result, plants were rendered functionally able to out-cross, with an average 87% and 54% manually pollinated seed-set rate compared to the corresponding controls at the 0.2 mg/L and 0.4 mg/L doses, respectively. CONCLUSIONS: The results suggested that male reproductive function was much more sensitive to tribenuron-methyl exposure than female function. This sulfonylurea herbicide has a promising use as the gametocide for hybrid production in cruciferous plants.


Subject(s)
Arylsulfonates/toxicity , Brassicaceae/drug effects , Flowers/drug effects , Herbicides/toxicity , Plant Infertility , Reproduction/drug effects
12.
Appl Plant Sci ; 5(12)2017 Dec.
Article in English | MEDLINE | ID: mdl-29299393

ABSTRACT

PREMISE OF THE STUDY: SP2S is a spontaneous thermo-sensitive genic male sterility (TGMS) mutation that facilitates two-line hybrid breeding in Brassica napus (Brassicaceae). De novo assembly of the floral bud transcriptome of SP2S can provide a foundation for deciphering the transcriptional regulation of SP2S in response to temperature change. METHODS: mRNAs of the young floral buds of SP2S and its near-isogenic line SP2F grown under cool (16°C)/warm (22°C) conditions were sequenced on an Illumina Solexa platform, producing 239.7 million short reads with a total length of 19.95 Gbp. RESULTS: The reads were assembled de novo using the Trinity program, resulting in 135,702 transcripts with an average length of 784 bp, an N50 value of 1221 bp, and a total length of 107 Mbp. We identified 24,157 cDNA-derived simple sequence repeats in the assembly. We found 137 and 195 single-nucleotide polymorphisms and 49 and 51 differentially regulated KEGG orthology groups when comparing sample SP2S at 22°C vs. SP2S at 16°C and sample SP2S at 22°C vs. SP2F at 22°C, respectively. DISCUSSION: The numerous differentially expressed genes and the derived single-nucleotide polymorphisms show abnormal transcriptional regulation in the TGMS system. These results outline an intricate transcriptional regulation that occurred in the rapeseed TGMS SP2S when the temperature changed.

13.
Blood Transfus ; 12 Suppl 1: s204-8, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23149140

ABSTRACT

BACKGROUND: It has been demonstrated recently that α1,3-galactosidase from Bacteroides fragilis can efficiently convert human group B red blood cells (RBC) to group O cells. In addition, in vitro data indicated that the enzymatic conversion process did not affect the physiological or metabolic parameters of the RBC. The aim of this study was to investigate the lifespan of enzyme- treated RBC in vivo in the circulation. MATERIALS AND METHODS: This was an experimental, randomised study. The rat was selected as the experimental subject because it expresses α-1,3galactosyl on its RBC. The efficiency of Galα1,3Gal epitope removal from RBC treated with α1,3-galactosidase was tested before the transfusion experiment to track the survival of RBC in the circulation. The animals were divided into three groups and injected via the tail vein with native, mock-treated or enzyme-treated RBC labelled with fluorescein isothiocyanate. The survival rates of the fluorescently labelled RBC were monitored by flow cytometry. RESULTS: Flow cytometry showed that α-galactosidase (0.02 mg/mL for RBC with a haematocrit of 30%) efficiently removed Galα1,3Gal epitopes from rat erythrocytes, although small amounts of remaining Galα1,3Gal epitopes were still detected. The in vivo data demonstrated that the half-life of enzyme-treated RBC was a little shorter than that of native RBC. However, the 24-hour survival fractions of native, mock-treated and enzyme-treated RBC were virtually identical. Most importantly, the enzyme-treated RBC, like the native RBC, were still detectable 35 days after transfusion. DISCUSSION: Our results indicate that α-glycosidase treatment had little effect on the in vivo survival kinetics of RBC. These data add further support to the feasibility of translating enzymatic conversion technology into clinical practice.


Subject(s)
Bacterial Proteins/pharmacology , Bacteroides fragilis/enzymology , Erythrocyte Transfusion , Erythrocytes/drug effects , Galactosidases/pharmacology , ABO Blood-Group System/chemistry , Animals , Blood Grouping and Crossmatching , Cell Survival , Drug Evaluation, Preclinical , Epitopes/drug effects , Feasibility Studies , Flow Cytometry , Galactosidases/isolation & purification , Humans , Male , Plant Lectins/analysis , Random Allocation , Rats , Rats, Sprague-Dawley
14.
J Appl Genet ; 54(2): 135-45, 2013 May.
Article in English | MEDLINE | ID: mdl-23329015

ABSTRACT

Yellow seed is a desirable characteristic for the breeding of oilseed Brassica crops, but the manifestation of seed coat color is very intricate due to the involvement of various pigments, the main components of which are flavonols, proanthocyanidin (condensed tannin), and maybe some other phenolic relatives, like lignin and melanin. The focus of this review is to examine the genetics mechanism regarding the biosynthesis and regulation of these pigments in the seed coat of oilseed Brassica. This knowledge came largely from recent researches on the molecular mechanism of TRANSPARENT TESTA (tt) and similar mutations in the ancestry model plant of Brassica, Arabidopsis. Some key enzymes in the flavonoid (flavonols and proanthocyanidin) biosynthetic pathway have been characterized in tt mutants. Some orthologs to these TRANSPARENT TESTA genes have also been cloned in Brassica species. However, it is suggested that some alterative metabolism pathways, including lignin and melanin, might also be involved in seed color manifestation. Polyphenol oxidases, such as laccase, tyrosinase, or even peroxidase, participate in the oxidation step in proanthocyanidin, lignin, and melanin biosynthesis. Moreover, some researches also suggested that melanic pigment in black-seeded Brassica was several fold higher than in yellow-seeded Brassica. Although more experiments are required to evaluate the importance of lignin and melanin in seed coat browning, the current results suggest that the flavonols and proanthocyanidin are not the only roles affecting seed color.


Subject(s)
Brassica/genetics , Pigmentation/genetics , Seeds/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Brassica/classification , Brassica/metabolism , Brassica napus/genetics , Brassica napus/metabolism , Flavonoids/genetics , Flavonoids/metabolism , Lignin/genetics , Lignin/metabolism , Mutation , Phenotype , Proanthocyanidins/genetics , Proanthocyanidins/metabolism
15.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 16(2): 240-6, 2008 Apr.
Article in Chinese | MEDLINE | ID: mdl-18426641

ABSTRACT

Recent studies have found that ABO blood group antigen is also closely related to the onset and development of many diseases. More and more attention is being paid to the decrease of A/B blood group antigen caused by some tumors. This study was purpose to investigate the correlation between DNA methylation of the ABO gene promoter CpG island and leukemia. The relative contents of ABH antigen on the surface of RBC from kinds of blood disease patients and healthy individuals were detected by using flow cytometry and confocal laser scanning microscopy. The DNA sequences and CpG methylation of ABO gene promoter in patients with hematopathy and healthy individuals, as well as the -102 site methylation of ABO gene promoter in patients with hematopathy and healthy individuals were detected by PCR and MSP-PCR respectively. The results showed that RBC from leukemia patients displayed different degree of A/B antigen decrease. The sequences of ABO gene promotor of patients with hematopathy were not different from healthy individuals indicating high conservation of promoter sequences. Comparison of sequences between patients with hematopathy and healthy individual indicated that CpG islands on ABO gene promoter either from blood disease patients or from healthy individual had no methylated site in AA patients, but C residues at position -102, -101, -100, -99 and -97 on the promoter of ABO gene in AML, CML, ALL and some MDS patients were methylated. It is concluded that methylation of CpG islands in promoter of ABO gene may result in AB antigen decrease in patients with leukemia. The methylation sites -102, -101, -100, -99 and -97 may be specific for leukemia. The methylation of site -102 can be used as a molecular marker in differential diagnosis for leukemias.


Subject(s)
ABO Blood-Group System/genetics , CpG Islands/genetics , DNA Methylation , Leukemia/genetics , Promoter Regions, Genetic , Base Sequence , Humans , Molecular Sequence Data , Sequence Analysis, DNA
16.
Yi Chuan ; 26(3): 330-2, 2004 May.
Article in Chinese | MEDLINE | ID: mdl-15640013

ABSTRACT

The author found a novel yellow-white flower color mutation in the male sterile progenies derived from a commercial Brassica.napus hybrid C022, which was produced by a male sterility line 9012A, whose sterility was controlled by interaction between two pairs recessive genes and a pair of epitatic genes. The mutant was named 991S. 991S had three morphologic characters:(1) The color in the middle of every petal was yellow, yet the both sides were white.(2)Every calyx might become striped albino (3) Only male sterile plants in different populations had mutative character. Except flower color, they had similar morphologic characters to the normal male sterile sib-plants. The plants were slender and little with little flowers that had flat petals, bended stigmas, degenerative stamen, and dry anthers. Primary analysis of its origin and inheritance showed that this mutative character was controlled by recessive partial albino gene.


Subject(s)
Brassica napus/genetics , Color , Fertility/genetics , Flowers/genetics , Mutation , Brassica napus/anatomy & histology , Crosses, Genetic , Flowers/anatomy & histology , Genetic Linkage
SELECTION OF CITATIONS
SEARCH DETAIL
...