Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Biochem ; 120(3): 4385-4397, 2019 03.
Article in English | MEDLINE | ID: mdl-30260040

ABSTRACT

Acetaminophen (APAP) is a widely used over-the-counter analgesic and antipyretic. It can cause hepatotoxicity. Recent studies demonstrated that hydrogen sulfide (H2 S) exhibits cell protection in several cell types. This study was designed to investigate whether H 2 S ameliorated APAP-induced acute liver injury and to elucidate its mechanisms. In this study, we analyzed the detailed biological and molecular processes of APAP-induced hepatotoxicity using a bioinformatics analysis, which showed that apoptosis and the c-Jun N-terminal kinase (JNK)/mitogen-activated protein kinase pathway were confirmed to play critical roles in these processes. We further investigated the protective effects of H 2 S on APAP-induced hepatotoxicity. In vivo, we observed that the exogenous supplement of H 2 S ameliorated APAP-induced liver injury. Cystathionine-ß-synthase (CBS) and cystathionine-γ-lyase (CSE) systems were the endogenous pathway of H 2 S. The expression of CBS/CSE was decreased in APAP-treated mice, while H 2 S could significantly restore it. In addition, APAP-induced JNK activation was inhibited by H 2 S in vivo. In vitro, H 2 S abolished the active effects of APAP on caspase3, Bax, and Bcl-2 expressions as well as JNK phosphorylation in hepatocytes. It was found through flow cytometry that the amount of APAP-induced apoptotic hepatocytes was decreased in the presence of H 2 S. In conclusion, our results suggested that H 2 S attenuated APAP-induced apoptosis in hepatocytes through JNK/MAPK siganaling pathway.


Subject(s)
Acetaminophen/adverse effects , Apoptosis/drug effects , Chemical and Drug Induced Liver Injury/metabolism , Hepatocytes/metabolism , MAP Kinase Signaling System/drug effects , Acetaminophen/pharmacology , Animals , Apoptosis Regulatory Proteins/metabolism , Cell Line , Chemical and Drug Induced Liver Injury/pathology , Hepatocytes/pathology , Humans , Hydrogen Sulfide , MAP Kinase Kinase 4/metabolism , Male , Mice , Mitogen-Activated Protein Kinase Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...